

CIRRUS CL-GD61 0/620
Set Display Type

INT 10, AH=12, BL=92

center)
Panel Control 1 (pNLcrLI) Index OD4H bit 6

Bit 6 is the overflow (9th) bit for ROWOFF
Panel Control 2 (PNLCTLII) Index OOSH bits 2 and 7

Bit 2 protects the attnDute palette
Bit 7 enables the internal grey scale generation circuit to receive input data from
the 256x4 internal palette which keeps track of the CRT RAMOAC contents,
applies the sum to grey conversion and stores the result in 256 4 bit locations.

This call updates all of the registers updated by a setmode (Int 10, AH = (0) call.
Refer to 3.8 Set Video Mode, page 22 for details.

VGA Regs: Feature Control Register (GENR) bits 0-1

Seg 408:

NOTE: These bits are not used for standard VGA and are specified as
reserved by IBM, Cirrus Logic uses them as described below:

bit 1 bit 0 Description
0 0 Flat Panel Standby mode
0 1 Flat Panel Active
1 0 CRT Active
1 1 Undefined

Since this call performs a set mode, all of the VGA hardware registers may be
modified by this function.

[50+ (ACTIVPAG ·2)] CURSPOSn Used to decide where to put character and whether
or not to wrap the cursor position.

[87] GENINFOI Informational byte

REMARKS: Takes effect immediately when in VGA state (not at all in any other state). The BIOS
attempts to preserve the screen image exactly as it appears when the display is switched.
The CRT will be driven as a color monitor if it is PS/2 compatible and was not connected
at the time the system was powered up. There is no other error checking on this function ..

SYSTEM DEFAULT: Flat Panel (LCD)

CIRRUS CL-GD6l0/620
Version 1.0 09/19/89

PHOENIX Confidential

......

47

Set 8 bit Operation

INT 10, AH=12, BL=93

3.9.18 Set 8 bit Operation

Used to force the system to run as an 8 bit device.

ON CALL:

Proc Regs: AH = 12
BL = 93
AL = 00 allow system to run as 16 bit device

01 force system to run as 8 bit device

Cirrus Regs: Scratch Register Index OBOH bits 2

CIRRUS CL-GD61 0/620

Bit 2 is bit 10 FIrst User Options word - Force 8 bit Operation

ON RETURN:

Proc Regs: None

Clrrns Regs: Scratch Register Index OBOH bits 2
Bit 2 is bit 10 Fust User Options word - Force 8 bit Operation

LCD Control 3 (LCDCNTLm) Index 0C7H bit 0
Selects 8 or 16 bit bus operation.

RE~IARKS: Used to force 8 bit operation in an environment where 16 bit operation is possible. Takes
effect immediately.

48

SYSTEM DEFAULT: Allow system to run as 16 bit device

..

Version 1.0 09/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

CIRRUS CL-GD61 0/620
Power Conserve Mode

INT 10, AH=12, BL=94

3.9.19 Power Conserve Mode

Enable / disable power conserve mode.

NOTE: External hardware is required to actually perform a power shutdown.

ON CALL:

Proc Regs: AH = 12
BL = 94
AL = 00 normal operation

01 power conserve mode

Cirrus Regs: Scratch Register Index OBOH bit 0
This bit is bit 8 FJIst User Options word - CRT Operation

Seg 4OH: [63] ADDRCRTC 6845 compatible I/O port address for current mode.

ON RETURN:

Proc Regs: None

Cirrus Regs: LCD Control Register (LCDCNTLI) Index BAH bit 7
Enable/disable power save mode.

VGA Regs: Feature Control Register (GENR) bits 0-1

NOTE: These bits are not used for standard VGA and are specified as
reserved by mM, Cirrus Logic uses them as described below. While the
system is in power conserve mode, these bits are write protected.

bit 1 bit 0 Description
0 0 Display in Standby mode
0 1 Flat Panel Active
1 0 CRT Active
1 1 Undefined

REMARKS: Useful in power management. When the system is in power conserve mode, the screen is
blanked, the flat panel backlight is turned off, video DRAM refresh is reduced, RAS and
CAS are reduced, and the ITS clock to the CL-GD610 is turned off. Writes to the video
buffer work normally while in power conserve mode. When normal operation is
resumed, the video system is restored to the state it was in before power conserve mode
was entered. This include,s restoring the screen image. Takes effect immediately.

NOTE: It is the responsibility of the·software that placed the system in power
conserve mode turn it back on when needed.

SYSTEM DEFAULT: Normal Operation

CIRRUS CL-GD610/620
Version 1.009/19/89

PHOENIX Confidential 49

.e' . ~.

Expanded Text Mode
INT 10, AH=12, BL=95 CIRRUS CL-GD61 0/620

3.9.20 Expanded Text Mode

Enable/disable expanded text for text modes.

NOTE: This Video BIOS function only has effect in LCD text modes.

ON CALL:

Proc Regs: AH = 12
BL = 95
AL = 00 enable expanded text mode

01 disable expanded text mode

Cirrus Regs: Scratch Register Index OBOH bit 0

Seg40H:

This bit is bit 8 Fll'st User Options word - CRT Operation
Scratch Register Index OB2H bit 6

This bit is bit 14 Second User Options word - Expanded Text Mode (LCD)

[85] BYTESCHR Height of character matrix
[89] GENINF03 Information byte bits 7 and 4

These bits are used to determine the number of scan lines in the current mode.

ON RETURN:

Proc Regs: None

Cirrus Regs: Scratch Register Index OB2H bit 6
This bit is bit 14 Second User Options word - Expanded Text Mode (LCD)

LCD Control 2 (LCDCNTLll) Index 0C2H bit 0
Supports expanded LCD text modes using 19 line character fonts.

This call updates all of the registers updated by a setmode (lnt 10, AH = (0) call.
Refer to 3.8 Set Video Mode, page 22 for details.

VGA Regs: Since this call performs a set mode, all of the VGA hardware registers m~y be
modified by this function. '.

REMARKS: Uses font with an 8x19 chara~t;r box to allow the text to completely fill a 480 line flat
panel

50

NOTE: The expanded font is only used in VGA 400 line text modes using a 16
high (or greater) font on an LCD. In all other cases, the normal font size is used
even if this option is enabled.

Takes effect immediately.

NOTE: This is not the same as using the expanded graphics mode used to fill the
screen in graphics modes.

SYSTEM DEFAULT: Enabled

Version 1.0 f1J/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

CIRRUS CL-GD61 0/620
32 Grey Shades

INT10,AH=12,BL=96

3.9.21 32 Grey Shades

EnablesjDisables stipple (32 grey shades).

NOTE: This Video BIOS function only has effect on the LCD in VGA graphics mode 13 and
Cirrus Extended mode 70.

ONeALL:

Proc Regs: AH = 12
BL = 96
AL = enable/disable

00 enable 32 grey shades
01 disable 32 grey shades

Cirrus Regs: Scratch Register Index OB2H bit 7
This bit is bit 15 Second User Options word - 32 Grey Shades (LCD)

ON RETURN:

Proc Regs: None

Cirrus Regs: Scratch Register Index OB2H bit 7
This bit is bit 15 Second User Options word - 32 Grey Shades (LCD)

Grey Scale Offset Register (GROFF) Index OD6H bit 7
Bit 7 enables/disables stippling

REMARKS: 256 color modes are displayed on a monochrome flat panel display in 32 (instead of 16)
shades of grey when stippling is enabled. Each pixel is represented by two bits and one
bit gets a different color value than the other bit when stippling is enabled.

SYSTEM DEFAULT: Enabled

CIRRUS CL-GD610/620

-a.

Version 1.009/19/89
PHOENIX Confidential

•

Sl

Graphics Reverse Video
INT 10, AH=12, BL=97 CIRRUS CL-GD610j620

3.9.22 Graphics Reverse Video

Enable/disable graphics mode reverse video.

NOTE: This Video BIOS function only has effect in graphics modes.

ON CALL:

Proc Regs: AH = 12
BL = 97
AL = enable/disable

00 enable graphics reverse video for LCD
01 disable graphics reverse video for LCD
02 enable graphics reverse video for CRT
03 disable graphics reverse video for CRT

Cirrus Regs: Scratch Register Index OBOH bit 0
This bit is bit 8 Fll'st User Options word - CRT Operation

Scratch Register Index OBlH bit 4
This bit is bit 4 Fll'st User Options word - Graphics Mode Reverse Video (LCD)

Scratch Register Index OB3H bit 4
This bit is bit 4 First User Options word - Graphics Mode Reverse Video (CRT)

ON RETURN:

Proc Regs: None

Cirrus Regs: CW'Sor Attributes (CURS) Index OASH
At initialization, the Caret Width (CW) and Caret Height (CH) registers Indices
096H and 097H respectively, are both initialized to 1. This permits the CW'Sor
Attributes register to be used to enable/disable reverse video on the CRT.

Scratch Register Index OBlH bit 4
This bit is bit 4 Fll'st User Options word - Graphics Mode Reverse Video (LCD)

Scratch Register Index OB3H bit 4
This bit is bit 4 FlI'st User Options word - Graphics Mode Reverse Video (CRT)

Panel Control 2 (PNLCTLll) Index ODSH bit 3
Enables/disables graphics reverse video.

REMARKS: Determines if graphics modes are displayed in reverse video or not. If a request for
reverse video is issued and the current mode is a graphics mode, reverse video takes
effect immediately. If the current mode is a text mode, reverse video takes effect when
the mode is changed to a graphics mode.

S2

NOTE: In LCD modes, if a frame color was explicitly set using the Set Frame .. ~
Color function (Int 10, AH= 12, BL=8A), changing from or to reverse video will'
cause the frame color to be 'reversed' also.

SYSTEM DEFAULT: LCD - Enabled
CRT - Disabled

Version 1.009/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

Appendix A VGA Analysis and Verification

A.1 Theory ... 55
A.2 Operation ~ ... 56
A3 Interrupt 10H .. 57

A3.1 Set Video Mode - Int 10H, AH = 00 .. 58
A3.2 Set Cursor Size - Int 10H, AH = 01 ... 58
A33 Set Cursor Position - Int 10H, AH = 02 •••••••..•..••.•••••••.•.•••.•••......... 58
A3.4 Get Cursor Status - Int 10H, AH = 03•................................... 58
A3.5 Read Light Pen Position - Int 10H AH = 04 59
A3.6 Select New Video Page - Int 10H, AH=05 59
A3.7 Scroll Active Page Up - Int 10H, AH=06 59
A3.8 Scroll Active Page Down - Int 10H, AH = 07 60
A3.9 Read Character and Attnoute at Cursor - Int 10H, AH = 08 ••••••••••••••.•.....•.• 61
A3.10 Write Character and Attnoute at Cursor - Int 10H, AH=09 61
A3.11 Write Character at Cursor - Int 10H, AH=OA 62
A3.12 Set CGA Color Palette - Int 10H, AH = OB 62
A3.13 Write Pixelto Screen - Int 10H, AH=OC 62
A3.14 Read Pixel- Int 10H, AH=OD•................................... 63
A3.15 Write Character in TIY Mode - Int 10H, AH=OE 63
A3.16 Get Current Video State - Int 10H, AH = OF 64
A3.17 Set Palette Registers - Int 10H, AH = 10 ...•................................... 64
A3.18 Character Generator - Int 10H, AH = 11•....................... 64
A3.19 Alternate Select - Int 10H, AH = 12 ... 65
A3.20 Display String - Int 10H, AH = 13 ... 65
A3.21 Get/Set Video Display Combination Codes - Int 10H, AH = 1A •...••...•••.•...•.• 65
A3.22 Get Functionality/State Information - Int 10H, AH = 1B•............ 66
A3.23 Save /Restore Video State•............................. 66

A4 Application Verification••................................... 66

.

CIRRUS CL-GD610/620
Version 1.009/19/89

PHOENIX Confidential 53

54

(This page intentionally left almost blank)

Version 1.009/19/89
PHOENIX Confidentiai

"

CIRRUS CL-GD610/620

APPENDIX A
VGA ANALYSIS AND VERIFICATION

The following sections descnl>e the proposed verification plan for the Extensible VGA. The verification
is done using the GSCRIPT utility developed by Phoenix. GSCRIPT is a tool for modifying and/or
watching the environment before and after an interrupt call.

A.1 Theory

For the purpose of this discussion PC BIOS interrupt services are treated as black boxes - although the
data environment can be observed before and after an interrupt call, the internal workings of the BIOS
as it services the interrupt cannot be watched.

For the purpose of verifying compatibility these black boxes are examined as follows:

Data in the environment are set up and a BIOS interrupt is invoked, affecting the data environent of the
caller. The data environment input to the interrupt can be any/all of the following data elements:

Processor Registers AX,Bx, ... ,BP
Mother Board Memory -Segment 40h

-Save Tables

Adapter Registers
Adapter Memory

-User Defmed Tables
-etc.

After a BIOS interrupt call is complete any part of the data environment might be changed, depending
on the service invoked.

Interrrupt compatibility between two systems exists if for every possible input condition they both
produce the exactly same output condition.

Interrupt compatibility between two systems is verified by making calls to both BIOSes with exactly the
sam.e. input data (registers, memory. etc.) and then verifying that both produce exactly the same effect
for a'" set of input conditions. This set of input conditions should cover a large number of BIOS calls
which ae with.iJl the defiD~d bouncls of~gal.requests as well as a fair number of calls which are outside
the defined boundaries of normal operation. In this manner is is possible to verify that a given BIOS is .
compat.ible with another not· ony under normal operating conditions, but also under undermed
conditionS.

Once a set of test cases which encompass the full range of input conditions is established, verification of
functional compat.ibility can begin At this point verifying compatibility between two BIOSes becomes a
simple three step process:

1. Run the test cases on one BIOS and collect the results. -.
2. Run the test cases on the other BIOS and collect the results.
3. Compare the results.

If the comparision finds no functional differences, then the two BIOSes are compatible.

CIRRUS CL-GD610/620
Version 1.009/19/89

PHOENIX Confidential 55

A.2 Operation

Testing for complete compatibility involves running a large number of tests on both BIOSes under
consideration and then comparing the results for functional differences. In the interest of conserving
person hours the test process is automated as much as possible. This process of running tests and
comparing results requires two tools - a program to run the tests and a program to compare the results.
As of this writing we have the program to run the tests, GSCRIPT.

The program GSCRIPT takes three command line arguments - an initialization me, an script file, and a
name for the output me. The initialization me contains information about which data elements are
looked at during test execution and whether to report the value of any given data element after every
BIOS call or only if it has changed. The script file contains information about actually running the test -
what values to put in which data elements, and which interrupt calls to make when. It is also possible in
the script file to instruct GSCRIPT about which data elements to report on. The output me name is
simply the desired name for the me where GSCRIPT dumps its results.

When testing for compatibility it is important to use a robust set of test cases which encompass the full
range of input conditions. This set of test cases is bound to be large and, unless it is dealt with in a
systematic and organized fashion, completely unmanagible.

Critical to managibility is the concept of input data hierarchy. For any given BIOS call there are one or
more input data elements which have an effect on the output data. Of these input data, some have a
greater effect than others, and are therefore higher on the input data hierarchy. For example, in the
video BIOS world there is a variable in memory at location 40:49 - Current Mode Number - which has
an effect on the functionality of every video BIOS call. This scope of effect puts 40:49 at the top of the
input data hierarchy. As an example of lesser effect there is in the video BIOS world a bit in memory, bit
Oat 40:87, which indicates whether or not cursor emulation is enabled. This bit contributes to the
calcuation of the start and ending lines of the alphanumeric cursor. Not very many functions care about
the state of this bit. Bit 0 of 40:87 is close to the bottom of the input data hierarchy.

This concept of hierarchy of input data effect is instrumental in any discussion of how to create a
managible input data set.

Fast, the ideal approach. For any given BIOS call there are a fmite number, X, of input data which have
an effect on the output data. Ideally X-I of the input data is kept constant while changing a single input
datum between BIOS calls. After making BIOS calls with all of the values in the range of the single
changing datum, one of the other data may be changed which were previously held constant. At this
point we can begin again to cycle through all of the values in the range of the single changing datum. In '
order to keep things simple it is best to change those input dati ~t the top of the hierarchy as seldom as
possible.

As an example, let's consider a test for write character at cursor. This function allows one to specify at
which video page to write a character. Depending upon the current mode it is possible to write to any .
one of as many as eight pages. For the sake of discussion we will consider this function to have three
input data - video mode number, video page number, and cursor location. In this example mode number
is highest in the hierarchy and cursor location is lowest. Accordingly, the mode number and page
number would be set to the first values in their test range and then left constant while changing the
cursor position, the lowest in the hierarchy, between BIOS calls. This would continue until all of the
values in the test range of cursor position were exausted. At this point the page number would be
changed, the next lowest in the hierarchy, to the next value in its test range and cycle once again through
all the values for cursor position.

56
Version 1.009/19/89

PHOENIX Confidential CIRRUS CL-GD610/620

This cycling of values continues until BIOS calls for all possible combinations of values in the test ranges
of page number and cursor position have been made. Once all of those combinations are tested, the
video mode number can be changed, highest in the hierarchy, using the set mode function and start
cycling cursor position and page number all over again.

The main point of all this cycling through values is NEVER change more than one input variable at a
time, ALWAYS be consistant about how you change groups of interdependant input variables, and BE
CERTAIN to change the highest item in the hierarchy at LEAST OFfEN. The benefit to organizing
tests in this fashion is that test mes are easier to create and manage, and the result files are easier to
interpret.

Placing all test cases for verifying complete compatibility in a single script fLle is not a viable option
because it would take too long to run and would not allow one to test an individual aspect of one
function by itself. The alternative to one huge script file is a number of smaller script files. The main
problem with having more than one script me is keeping them organized in a managable fashion.

The first level of organization should be by function. As an example, in the VGA video BIOS world the
functions one can request are numbered 0 through leh. A person creating test scripts should create a
directory for each function to be tested and place each function's scripts in it's directory.

Just as it is not practical to create one huge script for a given BIOS it is not practical to create one big
script for a given function. It is easier to break the testing into a number of levels and create a test
script for each level. In testing for compatibility there are three levels of testing:

1. Desired results (e.g. was the character really written) - This level of testing should test
normal operating conditions.

2 Undefined side-effects - This level of testing should test operation under
undefmed/non-standard/ out of bounds conditions.

3. Side effects - are any occuring? This level should examine the entire environment for
side-effects/changes.

Levell testing involves looking at the place in the data environment where the BIOS function is
expected to do its main work before and after the BIOS call to verify that the work got done.

Level 2 testing involves making BIOS calls with input parameters that are probably not what the BIOS
designers had in ~d when they put it together.

Level 3 testing involves making c.omplete dumps of the entire data environment before and after BIOS
calIs to keep track of side effed\, The fun4ionality tested by level three scripts is the same as that
tested by level one scripts. The only difference between level one scripts and level three scripts is that
level one scripts report changes in the entire data environment while level three scripts report the
contents of the entire data environment, regardless of changes.

In all cases it is important to co~pare the results from our BIOS with the results from mM's to r;nake
sure our's is compatible. . ..
A.3 Interrupt 10H •

Each Interrupt will be verified using one or more GSCRIPT script fLIes.

CIRRUS CL-GD610/620
Version 1.0 09/19/89

PHOENIX Confidential

. -.. '.

57

A.3.1 Set Video Mode -Int 10H, AH=OO

SOOOOAOJn

SOOOOBOJn

SOOOOCOJn

This script requests a set mode for all legal modes. To get monochrome modes it is
necessary to change DEVFLAG 40:10 bits 4-5 to indicate a mono display is installed.
Because the purpose of function zero is to set up the data environment, the entire data
environment is dumped before and after calls to set mode.

Try to set undefined/illegal modes. Try to set color modes when DEVFlAG says a
mono display is installed and vice versa. Also call setmode with all the various override
character sets, number of lines etc. set to a number of combinations.

Due to the nature of this function and SOOOOAO.in, this script may not be needed. Look
into it.

A.3.2 Set Cursor Size - Int 1 OH, AH = 01

SOlOOAOJn

SOlOO80Jn

SOlOOCOJn

This script tests set cursor size in all text modes~ Cursor size is set to underbar,
overbar, halfblock and fullblock in both emulation and non-emulation modes.
Emulation mode is on when 40:87[0] = o.

This script tests out of bounds and undefined conditions such as setting cursor size
while in a graphics mode, using values appropriate for non-emulation while cursor
emulation is on etc.

This me should be like SOI00AO.in, but with all the data environment being examined
for side effects.

A.3.3 Set Cursor Position - Int 10H, AH = 02

S0200AOJn

S020080Jn

S0200COJn

This script tests set cursor location in all modes. Processor and CRTC registers and
segment 40h are checked for differences. Test cases include setting cursor location to
all four comers of the screen. These test cases are tried on all valid pages.

This saipt tests set cursor location in all modes. Processor and CRTC registers and
segment 40h are checked for differences. Cases tested include setting cursor of a
non-current page, setting current page's cursor to point to another page, setting current
page's cursor to point to a nonexistant page by specifying bad page in BH and by
specifying out of bounds location in DX. ." ":' :}6 .
This me is like S02OOAO.in, but with all the data environment being examined for side
effects.

A.3.4 Get Cursor Status -Int 10H, AH=03

S0300AOJn

S03OOBOJn

58

This function is tested by first using GSCRIPT to set segment 40h (40:SO-SE) and then
calling int 10 function 03 to retrieve the values put there. All pages in all mode~are
tested. Testing always reads the current page's cursor location. Processor and ~TC
registers as well as segment 40h are checked for differences.

This function is tested by first using GSCRIPT to set the variable CURPOS in segment

Version 1.009/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

S0300COJn

40h (4O:50-SE) and then calling int 10 function 03 to retrieve the values put there. All
pages in all modes are tested. This script concentrates on non-current and invalid
pages. Processor and CRTC registers as well as segment 40h are checked for
differences.

This flle should be like S03OOAO.in, but with all the data environment being examined
for side effects.

A.3.S Read Light Pen Position - Int 10H AH = 04

This function is not supported on the VGA adapter.

A.3.6 Select New Video Page - Int 10H, AH = OS

SOSOOAOJn

SOSOOBOJn

SOSOOCOJn

For this function there is a different cursor position for each page to see how CRTC
registers are set. Test cases include all valid pages and modes. Processor and CRTC
registers as well as segment 40h are examined for differences.

For this function there is a different cursor position for each page to see how CRTC
registers are set. This script tests for dependencies on CRT _ COLS (4O:4a) and
CRT _ PLEN (4O:4c) by dividing the values held there by two and calling function 05.
Processor and CRTC registers as well as segment 40h are examined for differences.

This file should be like SOSOOAO.in, but with all the data environment being examined
for side effects.

A.3.7 Scroll Active Page Up -Int 10H, AH=06

S06OOAOJn

S06OOBOJn

S06OOCOJn

S06OODOJn

This function is tested by writing a pattern to the regen buffer with GSCRIPT's FILL
command, invoking the service and then using the DUMP command to verify that the
pattern was shifted appropriately. All pages in all modes should be tested. at least six
different kinds of boxes should be scrolled - full screen, each of the four comers and a
box in the middle of the screen. Each box should get scrolled three different ways - by
one line, by zero lines (scroll clear), and by as many lines as the box is big (should be
the same as scroll clear) In addition to DUMPing the regen buffer to see if the scroll
happened, we should check processor and CRTC registers and segment 40h for
changes.

In this script we use the regen buffer FILL and DUMP commands from the script
above but the actual scroll requests are invalid - top of box is lower on screen than
bottom, left side of box is farther right than right side, etc. In addition to DUMPing
the regen buffer to see if the scroll happened, we check processor and CRTC registers
and segment 40h for changes.

This script tests for CRT_COLS (4O:4A) dependencies by dividing the value found
there by 2. One or two pages in each mode are tested in the manner used by
S06OOAOlN. Processor and VGA registers are checked for changes.

This script tests for CRT_PLEN (4O:4C) dependencies by dividing the value found
there by 2. One or two pages in each mode are tested in the manner used by
S06OOAOlN. Processor and VGA registers are checked for changes.

CIRRUS CL-GD610/620
Version 1.009/19/89

PHOENIX Confidential 59

S06OOEOJn

S06OOFOJn

S06OOGOJn

This script tests for CRT_POFF (4O:4E) dependencies by dividing the value found
there by 2. One or two pages in each mode are tested in the manner used by
S06OOAO.IN. Processor and VGA registers are checked for changes.

This script tests for BYrESCHR (40:85) dependencies by dividing the value found
there by 2. One or two pages in each mode are tested in the manner used by
S06OOAO.IN. Processor and VGA registers are checked for changes.

This file should be like S06OOAO.in, but with all the data environment being examined
for side effects.

A.3.S Scroll Active Page Down - Int 1 OH, AH = 07

S0700AOJn

S0700BOJn

S0700cOJn

S 0700 DOJn

S0700EOJn

S0700FOJn

S0700G0Jn

60

This function is tested by writing a pattern to the regen buffer with GSCRIPT's FILL
command, invoking the service and then using the DUMP command to verify that the
pattern was shifted appropriately. All pages in all modes should be tested. at least six
different kinds of boxes should be scrolled - full screen, each of the four comers and a
box in the middle of the screen. Each box should get scrolled three different ways - by
one line, by zero lines (scroll clear), and by as many lines as the box is big (should be
the same as scroll clear) In addition to DUMPing the regen buffer to see if the scroll
happened, we should check processor and CRTC registers and segment 40h for
changes.

In this script we the regen buffer FILL and DUMP commands from the script above
but the actual scroll requests are invalid - top of box is lower on screen than bottom,
left side of box is farther right than right side, etc. In addition to DUMPing the regen
buffer to see if the scroll happened, we check processor and CRTC registers and
segment 40h for changes.

This script tests for CRT _ COLS (4O:4A) dependencies by dividing the value found
there by 2. One or two pages in each mode are tested in the manner used by
S0700AO.IN. Processor and VGA registers are checked for changes.

This script tests for CRT_PLEN (4O:4C) dependencies by dividing the value found
there by 2. One or two pages in each mode are tested in the manner used by
S0700AO.IN. Processor and VGA registers are checked for changes. .

This script tests for CRT POFF (4O:4E) dependencies by dividing the val~ foUnd
there by 2. One or two p;ges in each mode are tested in the manner used by •
S0700AO.IN. Processor and VGA registers are checked for changes.

This script tests for BYTESCHR (40:85) dependencies by dividing the value found
there by 2. One or two pages in each mode are tested in the manner used by
S0700AO.IN. Processor and VGA registers are checked for changes.

This file should be like S0700AO.in, but With all the data environment being examined
for side effects.

VeniOD 1.009/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

A.3.9 Read Character and Attribute at Cursor • Int 10H, AH = 08

SOSOOAOJn

SOSOOBOJn

S0800COJn

S08OODOJn

S08OOEOJn

S08OOFOJn

The script for this function uses FILL to load characters into the regen buffer before
reading them back. That is not feaSable for graphics modes in which case function 9 is
used. The script puts a different character at all four comers of every page and then
reads it back using function 08h for all modes. This script tests every page while it is
not the active page. Instead of using function 02h to set the cursor between calls to
function OSh, the cursor position variable is changed at 4O:50-5E.

The script for this function should use FILL to load characters into the regen buffer
before reading them back. That may not be feasable for graphics modes but it should
defmitely be done for the text modes. The script should put a different character at all
four comers and the middle of every page and then read it back using function 08h for
all modes. In this script test every page while it is not the active page. Instead of using
function 02h to set the cursor between calIs to function 08h, it changes the cursor
position variable at 4O:50-SE.

This script tests for CRT _ COLS(4O:4a) dependencies.

This script tests for CRT _PLEN(40:4c) dependencies.

This script tests for BYTESCHR(4O:S5) dependencies.

This me should be like S08OOAO.in, but with all the data environment being examined
for side effects.

A.3.10 Write Character and Attribute at Cursor • Int 10H, AH = 09

S09OOAOJn

S09OOBOJn

S09OOCOJn

S09OODOJn

S09OOEOJn

S0900IDJn

Test all legal pages in all modes, always writing to the current page. Write three
characters to all four comers of screen. Use ICE probe and SEEREGEN macro to
verify write. Write to current page with CX set so that the characters write past the
end of line/end of screen. Make special note of what happens in this case - it is a big
compatibility issue. Write different attributes. Check processor and CRTC registers as
well as segment 40h variables for differences.

Test for DEVFlAG (40:10) dependencies by setting bits 4 and 5 to each of the four
possible values and calling function 9.

Test for CRT _ COLS (40:4A) dependencies by dividing contents of 4O:4A by 2 and
calling function 9.

Test for CRT_PLEN (4O:4C) dependencies by dividing contents of 4O:4C by 2 and
calling function 9.

Test all pages in all modes, writing to non-current pages by calling function with BH
< > AcrIVPAGE Write to invalid pages. Write a character to all four comers of
screen. Use ICE probe SEEREGEN macro to verify write. Write different attributes.
Check processor and CRTC registers as well as segment 40h variables for differences.

This file is like S09OOAOln, but with all the data environment being examined for side
effects.

' ..

CIRRUS CL-GD610/620
Version 1.009/19/89

PHOENIX Confidential 61

A.3.11 Write Character at Cursor - Int 1 OH, AH = OA

SOAOOAOJn

SOAOOBOJn

SOAOOCOJn

SOAOODOJn

SOAOOEOJn

SOAoom.in

Test all legal pages in all modes, always writing to the current page. Write three
characters to all four corners of screen. Use ICE probe and SEEREGEN macro to
verify write. Write to current page with CX set so that the characters write past the
end of line/end of screen. Make special note of what happens in this case - it is a big
compatibility issue. Write different attributes. Check processor and CRTC registers as
well as segment 40h variables for differences.

Test for DEVFlAG (40:10) dependencies by setting bits 4 and 5 to each of the four
possible values and calling function 9.

Test for CRT COLS (4O:4A) dependencies by dividing contents of 4O:4A by 2 and
calling functio~ 9.

Test for CRT PLEN (4O:4C) dependencies by dividing contents of 4O:4C by 2 and
calling function 9.

Test all pages in all modes, writing to non-current pages by calling function with BH
< > ACTIVPAGE Write to invalid pages. Write a character to all four corners of
screen. Use ICE probe SEEREGEN macro to verify write. Write different attributes.
Check processor and CR TC registers as well as segment 40h variables for differences.

This me should be like S09OOAO.in, but with all the data environment being examined
for side effects.

A.3.12 Set CGA Color Palette - Int 10H, AH = 08

SOBOOAOJn

SOBOOBOJn

SOBOOCOJn

-.

Test sub-function 0 (BH = 0) in all graphics modes. Test with all legal values in BL
(0-31). Check processor, attribute controller and CRTC registers as well as segment
40h variables for differences. In CGA hardware emulation modes check the CGA
COLOR register at port 3D9h for changes. Test sub-function 1 (BH = 1) in all
graphics modes. Test with all legal values in BL (0,1). Check processor, attnoute
controller and CRTC registers as well as segment 40h variables for differences. In
CGA hardware emulation modes check the CGA COLOR register at port 3D9h for
changes.

Test both sub-functions in all modes including text. In graphics modes' qlncentrate on
out of bounds values for register BL. Check processor, attribute controller arl'd CRTC
registers as well as segment 40h variables for differences. In CGA hardware em ulatioD
modes check the CGA COLOR register at port 3D9h for changes.

This me should be like SOBOOAO.in, but with all the data environment being examined
for side effects.

A.3.13 Write Pixel to Screen • Int 10H, AH = OC
. ,

SOCOOAOJn

62

Test all legal pages in all modes, always writing to the current p~e. Write a dot to all
four corners of screen. Use Ice probe and S1='JiREGEN macro to verify write. Try all
legal color values. Check processor and CRTC registers as well as segment 40h
variables for differences.

Version 1.0 09/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

SOCOOBOJn

SOCOOCOJn

Test all pages in all modes, writing to non-current pages by calling function with CX
and/or OX = a value past the bounds of the current page. Write to invalid pages.
Write a dot to all four comers of screen. Use Ice probe and SEEREGEN macro to
verify write. Test color values. Check processor and CRTC registers as well as
segment 40h variables for differences.

This me should be like SOAOOAO.in, but with all the data environment being examined
for side effects.

A.3.14 Read Pixel - Int 1 OH, AH = 00

SODOOAOJn

SODOOBOJn

SODOOCOJn

The script for this function should use FILL to load dots into the regen buffer before
reading them back. The script should put a different dot at all four comers of every
page and then read it back using function OOh for all modes. In this script test every
page while it is the active page.

The script for this function should use FILL to load dots into the regen buffer before
reading them back. The script should put a different dot at all four comers and the
middle of every page and then read it back using function OOh for all modes. In this
script test every page while it is not the active page with a number not equal to the
current page in BX and/or OX & CX pointing off the end of the page.

This me should be like SODOOAO.in, but with all the data environment being examined
for side effects.

A.3.1S Write Character in TTY Mode - Int 1 OH, AH = OE

SOEOOAOJn

SOEOOBOJn

SOEOOCOJn

SOEOODOJn

SOEOOEOJn

SOEOOroJn

Test all legal pages in all modes, always writing to the current page. Write a character
to all four comers of screen. Use ICE probe and SEEREGEN macro to verify write.
Write to current page with ex set so that the characters write past the end of line/end
of screen. Make special note of what happens in this case - it is a big compatibility
issue. Write control characters BS,BELL,CR,LF. Check processor and CRTC
registers as well as segment 40h variables for differences.

Test for OEVFl.AG (40:10) dependencies by setting bits 4 and 5 to each of the four
possible values and calling function 9.

Test for CRT _ COLS (4O:4A) dependencies by dividing contents of 4O:4A by 2 and '.
calling function 9.

Test for CRT _ PLEN (40:4C) dependencies by dividing contents of 4O:4C by 2 and
calling function 9.

Test all pages in all modes, writing to non-current pages by calling function with
CURPOSn past end of page. Write a character to all four comers of screen. Use ICE
probe SEEREGEN macro to verify write. Write different attributes. Check processor
and CRTC registers as well as segment 40h variables for differences.

This file should be like S09OOAO.in, but with all the data environment being examined
for side effects.

CIRRUS CL-GD610/620
Version 1.009/19/89

PHOENIX Confidential 63

SOEOOCOJo

A.3.16 Get Current Video State - Int 10H, AH = OF

SOFOOAOJo

SOFOOBOJo

SOFOOCOJo

This me would best be written as a part of S0500AO.in, making a call to function OFh
after every call to function OSh.

This me would best be written as a part of S0500BO.in, making a call to function OFh
after every call to function OSh.

A.3.17 Set Palette Registers - Int 10H, AH = 10

SIOOOAOJo

SIOOOBOJo
Sl000COJo

This script uses four files for the attribute controller and four files for the DAC. These
files are loaded into memory using the BUFF command so that the update palette
registers and update block of DAC registers subfunctions have tables to get values
from when updating those registers. The mes contain tables which will set all the
registers involved to OOh,55h, AAh, and FFh. The basic idea of this script is to set every
register to OOh, S5h, AAh, and FFh using every subfunction that can be used to set
them. After the registers are set to a given value by a given subfunction, they are read
back using all of the appropriate subfunctions. After every call the attribute
controller))AC, parameter save area and user palette profile are checked for changes.
The processor registers and segment40h variables are also checked for changes.

A.3.18 Character Generator - Int 1 OH, AH = 11

Sll00AOJo This scripts uses three files with font definitions in them-one each for 8X8, 8Xl4 and
8X16 character sets. For each text mode the number of lines is set to each possible
value and the appropriate sized font loaded. All the RAM banks (0-7) are loaded
using the subfunctions to load a user defined font, load a ROM font, and load a ROM
font and program the CRTC. Only the currently active bank is loaded when
subfunctions IOh,l1h,12h, and 14h are used. All 8 RAM banks are selected as active.
One at a time, of course. In each graphics mode, all reasonable combinations of font
size and rows per screen are loaded. After each load font subfunction call is made, a

S1100BOJn

64

• •. call to get current font info (AX = 113Oh) is made. After each call the processor
registers, CRTC, sequencer, segment 40h variables and interrupt vectors lib and 43~
are checked for changes.

This scripts uses three mes with font defmitions in them one each for 8X8, 8X14 and
8X16 character sets. In text modes graphics fonts are loaded and in graphics modes
text fonts are loaded. In text modes the subfunctions to load a font and reprogram the
CRTC are called to load a font into a non-active bank. In grap!llcs modes,
unreasonable combinations of font size and rows per screen are used. (E.G. load an
8X16 font and say :# rows = 43.) After each load font subfunction call is made, a call to
get current font info (AX = 113Oh) is made. After each call the processor registers,
CRTC, sequencer, segment 40h variables and interrupt vectors 1fh and 43h are
checked for changes.

Version 1.009/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

.. : ..

Sll00COJn

A.3.19 Alternate Select - Int 10H, AH = 12

S1200AOJn

S1200BO.in

S1200COJn

In this script, all of function Uh's subfunctions are tested, except those which support
display switching. PS/2 display switching support (sub function 35h) is tested as part of
the scripts to test function lAh. All others sub functions are tested in this script. Testing
consists of calling each subfunction with all defined values of input parameters while
checking segment 40h variables and VGA registers for change. When testing
subfunction 32h, CPU access to RAM, the Video System Enable register at port 3C3h
is checked for changes.

This script tests all of the sub functions tested by S12OOAO.in, but with undefmed input
values. This script's main purpose is to examine bounds checking functionality.

A.3.20 Display String - Int 1 OH, AH = 13

S1300AOJn

S1300BOJn

S1300COJn

Have two character strings - one with embedded attributes and one without. Use these
two strings to test all four sub-functions. Both strings should include the control
characters CR, LF, BS and BELL. Write to all valid pages in all modes. Always write
to current page. Check processor and CRTC registers as well as segment 40h variables
for differences.

Have two character strings - one with embedded attnbutes and one without. Use these
two strings to test all four sub-functions. Both strings should include the control
characters CR, LF, BS and BELL. Write to all pages in all modes. Write to some
invalid pages. Try writting to non-current pages. Write past end of line and end of
screen. Check processor and CRTC registers as well as segment 40h variables for
differences.

A.3.21 Get/Set Video Display Combination Codes - Int 1 OH, AH = 1 A

SlAOOAOJn

SlAOOBOJn

SlAOOCOJn

This script is best run with more than one video display adapter installed. this~ ~~t
should be run with all possible display combinations installed: Query what is° the~ ."~
current display combination, swap active and inactive displa~ and query again. repeat
the test to return to original configuration. This script also tests function 12h
subfunction 35h.

This script is best run with more than one video display adapter installed. This test
should be run with all poSSlble display combinations installed. Query what is the
current "display combination, and try to make an uninstalled adaper active. Try for all
uninsta.l1ed combinations. This script also tests function 12h sub function 35h.

This file should be like SlAOOAO.in, but with all the data environment being examined
for side effects.

CIRRUS CL-GD610/620
Version 1.009/19/89

PHOENIX Confidential 65

A.3.22 Get Functionality/State Information - Int 1 OH, AH = 1 B

SIBOOAOJn Perform these tests for all modes. Allocate a 64 byte buffer pointed to by ES:DI and
call function IBh, then DUMP the buffer.

SIBOOBOJn Make this script like SlBOOAO.in, but put a non-zero value in BX.

SIBOOCOJn This flle should be like S1BOOAO.in, but with all the data environment being examined
for side effects.

A.3.23 Save/Restore Video State

SICOOAOJn Perform these tests for all modes. For each type of save request buffer size, allocate a
buffer and then save the state, change the data environment coresponding to the type
of save performed, and restore the state. Look at the contents of the buffer after the
save. Compare data environment before save and after restore for differences.

SlCOOBOJn Perform save/restore where save is of one type and restore is of another.

SICOOCOJn This file should be like SICOOAO.in, but with all the data environment being examined
for side effects.

A.4 Application Verification

Application Verification includes, but is not limited to, the following:

66

PC Tech Journal System Benchmarks VI.O, Ziff Communications Co., 1988
PC Magazine Laboratory Benchmark Series Release 5.0, Ziff-Davis Corp., 1989
Power Meter Vl.5, The Database Group Inc., 1988
Miaosoft Flight Simulator V3.0, Microsoft Corp.
Splash, Spirunaker Software Corp., 1988
Tetris, NEXA Corp.
Miaosoft Windows, Microsoft Corp., 1987
VGAHDS· PS/2 Video Graphics Array Hardware Test Vl.0, Paradise Systems Inc (Western
Digital Corp.), 1987
Fantasy Land, IBM Corp., 1984
PC Paint V2.0
Norton Utilities 51 V4.5, Peter Norton, 1987
QA Plus V3.11, Diagsoft

Version 1.009/19/89
PHOENIX Confidential CIRRUS CL-GD610/620

.' .

INDEX

Adapter: DIP Switches, 11
Alternate Select, 25
Application Verification, 66
A TIR.IB Palette Lock, 40
Automatic Grey Scale Mapping, 38

D
BIOS Version, 27
Bold Font, 37

Compatibility, 1
Configuration, 10
Configuration Byte, 19

D
Design Overview, 1
Designed in Performance, 1
Display Type, 46

D
Easily Extensible, 1
EmUlation of Other Adapter Types, 3
Emulation of Other Video Subsystems, 1
Expanded Graphics Mode, 42
Expanded Text Mode, 50
Extended Function CalIs, 17
Extension Features, 13

D
Fast Mode, 33
Flexible Online Configuration Utility System

(FOCUS), 13

Get Configuration or User Options, 18
Graphics, Expanded Mode, 42
Grey Scale Lookup Bypass, 41
Grey Scale Mapping, 38
Grey Shades, 32, 51

Hardware Registers, 3
Horizontal Compensation, 44

D
Installed Memory, 30
Interrupt 10H, 57
Interrupt 10H Functions Overview[, 4
Interrupt 10H Interface, 3
Interrupt 15H Support, 17

Maximum Contrast, 38

Index
Version 1.009/19/89

PHOENIX Confidential

"0.

67

~
Operation, 56

'\

EJ
Phoe!l.ix Video Control Console, 13
Planar: CMOS Soft Switches, 10
Power Conserve Mode, 49
Power User, 14
Protect Mode, 34

Read DIP Switches, 11
Register overview, VGA, 6
Reverse Video, Graphics., 52
Reverse Video, Text., 35

D
Set Video Mode, 22
Setup, 11
State, 31

Table Driven Code Structure, 1
Text, Expanded Mode, 50
Theory, 55
Thin Font, 37

68

~
User Options, 28
User Options Word, 20

Vertical Position, 43
VGA Register Overviewf, 6
VGA Type, 26
Video Modes, 3,15
Video State, 31

D
8 bit Operation, 48

VersioD 1.0 09/19/89
PHOENIX Confidential Index

