This document provides detailed descriptions of the S3 Savage4 (all types) registers. The various methods of accessing these registers are described in Section 1.
Change History

Changes to Version A

SR1A_1, 3: Inverts for 1x and 2x signature clock in bypass modes
SR36, 37, 38, 39: Added duplicate DCLK PLL registers for VGA DCLK programming
SR3D_4: Allows HW cursor to move to right edge with flat panel and SP on (Rev. C)
CR37_3: Moved external 4x AGP clock input to CR37_4
CR37_7: 1 (default) = 1x AGP clock from PLL; 0 = 1x AGP clock from bypass
CR85: Revised definition for display FIFO fill/drain control.
CR88_4: Added restrictions on use of block write. Removed tiling off restriction.
PCI0E_7: Now reserved (not multifunction device)
MM850C_10: Reserved (MCLK only clock for 2D engine)
MM48584_6-4: 010 = destination (not source) color and 011 = 1-destination (not source) color
MM81EC_31-30: Must be programmed to 01b when destination flush enabled.

Changes to Version 0.3

Note: Rev. B silicon changes are in bold.
SR1A_0: Invert DCLK for clock doubled 15/16 bpp modes
SR1A_4: Now reserved = 0 (-STWR function no longer supported)
SR35_6: Former bit 7 is moved to bit 6. Former bit 6 is removed.
SR35_7: New bit reverses TV data output format selected via SR35_5-4.
SR37: PANELCLK output control (Rev. B)
SR39: AGP pad compensation register (Rev. B)
SR3D: New register for flat panel output control
SR54_7-5: Now reserved
SR58: Revised definition of horizontal border
SR5B_7-4: Revised vertical expansion table
SR5A: Revised definition of vertical border
CR11_6: Reserved (CR3A controls refresh)
CR33_7: Reserved (no flicker filter)
CR36_7-5: Added support for 8 and 32 MB 2Mx32 SDRAM configurations (Rev. B)
CR37_3: Added external clocks enabled by this bit (Rev. B)
CR3A_1-0: Revised definition for memory refresh control
CR3F_7-6: Reserved (no video engine or TV)
CR4C: Corrected valid bit range.
CR4D_1-0: Reserved (4K alignment)
CR59: Changed definition because of new memory map (Rev. B)
CR60_3-0: Added skew control for SDCLK1, SDCLK2 and SDCLKOUT.
CR68_7-6: Added definitions for 2Mx32 4 bank and 4Mx16 4 bank SDRAM support (Rev. B)
CR6F_0: Added note that this bit should be set only to allow programming of CR3F and then must be cleared
CR70_5: Added bit to eliminate an AGP clock delay
CR87_0: 1 or 2 clock block write
CR87_5-4: Specify clock rate for refresh
CR90_3 and CR90_6: These two bits must be set when displaying a 15/16 or 32 bpp primary stream on a flat panel.
CR92_4: Read only bit, 0 = Savage4 LT (Rev. B)
CR92_6: New bit for 2Mx32 4 bank SDRAM support
Savage4 Registers

Change History

CRB6: Write only register new pad compensation code (Rev. B)
CRB7: AGP 2x clock skew control (Rev. B)
PCI10-PCI24: New base address definitions (Rev. B)
MM8218_19-16: Value is in units of tiles (not QWords)
MM8218_23-20: Value is in units of lines (not QWords)
MM8508_4, 12: Removed (no BFIFO)
MMFF01_18, 19, 31: Reserved (no video conferencing support)
MMFF08_5, 6: Reserved (no video conferencing support)
MMFF1C: Removed (LPB general I/O port not supported)
MM81C0_31-28: Added bits to support triple buffering (Rev. B)
MM8218_31-24: Added new tile boundary field with QWord units (Rev. B)
MM48508, MM48528, MM48548: New Vertex Z coordinate registers (Rev. B)
MMr8580: Removed Z Pixel Offset register (Rev. B)
MM48584_30: Noted that the destination write low watermark must be all 0’s if this bit is set.
MM48584_31: Noted that the Z write low watermark must be all 0’s if this bit is set.
MM485A4_15-0: Modified definition for texture transparent color for RGB modes.
MM485A8_27: Reserved (no disable for perspective correction (Rev. B)
MM485D4_31: Changed to select W or Z buffer (Rev. B)
MM485E8_21-16: Noted this value must be all 0’s if MM48584_31 is set to 1 (flushing enabled). Further revised for Rev. B.
MM485EC_17-12: Noted this value must be all 0’s if MM48584_30 is set to 1 (flushing enabled). Further revised for Rev. B.
MM48C00: New definition of Status Word 0 for Rev. B
MM48C10: Definitions of stop and resume writing thresholds are reversed. For Rev. B, values are in 32 DWord units instead of DWords.
MM48C60: New definition of Alternate Status Word 0 for Rev. B

Changes to Version 0.2

SR39_7-6: Added bits for output drive adjustment for 1.5V VDDq
MM8300_210: Primary Stream buffer size in QWords -1
MM8304_21-0: Secondary Stream buffer size in QWords - 1
MM48A00_20-3: Corrected requirement for bits 5-3 (must be 111).
MM48A00_26-25: Noted restrictions on oversampling.
MM485EC_5-0: Reserved (no low watermark)
MM485EC_11-6: Revised definition of high watermark
Table of Contents

Change History... ii
Changes to Version 0.3.. ii
MM48C60: New definition of Alternate Status Word 0 for Rev. B.. iii

Table of Contents ... iv
Section 1. Register Addressing.. 1
 1.1 PROGRAMMED I/O .. 1
 1.2 MMIO.. 1
 1.3 BURST COMMAND INTERFACE (BCI).. 4
Section 2: VGA Register Descriptions ... 5
 2.1 GENERAL REGISTERS ... 5
 2.2 SEQUENCER REGISTERS.. 8
 2.3 CRT CONTROLLER REGISTERS.. 12
 2.4 GRAPHICS CONTROLLER REGISTERS .. 25
 2.5 ATTRIBUTE CONTROLLER REGISTERS... 31
 2.6 RAMDAC REGISTERS.. 36
Section 3: Extended Sequencer Register Descriptions... 39
Section 4: Flat Panel Registers... 55
Section 5: Extended CRTC Register Descriptions.. 69
Section 6: PCI Register Descriptions.. 113
Section 7: 2D Graphics Engine Register Descriptions... 129
Section 8: Streams Processor Register Descriptions... 151
Section 9: LPB/VIP Register Descriptions.. 171
Section 10: 3D Engine Register Descriptions.. 187
Section 11: Motion Compensation Register Descriptions... 209
Section 12: Mastered Data Transfer Register Descriptions... 217
Section 13: Configuration/Status Register Descriptions... 223
Index.. 233
Section 1. Register Addressing

There are three methods of programming Savage4 registers:

- **Programmed I/O**
- **MMIO**
- **Burst Command Interface (BCI)**

In addition, the CPU can directly access video memory via several data transfer windows (linear and tiled addressing) and write image data to video memory via the 2D or 3D engine via another data transfer window. Each of these topics is discussed below.

Note: Software should write 0s to all reserved register bits.

1.1 PROGRAMMED I/O

Programmed I/O (i.e., use of the processor's IN and OUT instructions), can be used only for accessing registers in the standard VGA register space. These include all the registers described in Sections 2 through 5. Sections 3-5 describe registers defined by S3 that use extensions of the VGA sequencer and CRTC register indices. These registers are denoted by "SRxx" and "CRxx", with xx being the index.

All the standard VGA register and extensions are also accessible via memory mapped I/O (MMIO), except that 3C3H must always be accessed via I/O. Setting SR9_7 to 1 disables all I/O accesses except to the standard VGA address space. PCI02_0 = 0 disables all I/O accesses.

1.2 MMIO

MMIO enabled is the power-on default, allowing PCI software immediate access to all registers and the ability to relocate the address space. There are two MMIO address mappings, as determined by the state of CRB0_7. By default, CRB0_7 = 1, which selects Mapping 0. The definitions of Mapping 0 and Mapping 1 change from Rev. A silicon to Rev. B silicon, as explained below. For processors that support it, the address ranges with bases specified by PCI14, 18, 1C, 20 and 24 should be marked as write combining. The address range with the base specified by PCI10 should not.
Savage4

Register Addressing

PCI Base Address 0 (PCI10) - Mapping 0 and Mapping 1

For Rev. A silicon, bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. For Rev. B silicon, bits 31-19 are programmable, resulting in a 512-KByte address space being claimed. The default base address is 7000 0000H. Write combining cannot be used for this address range.

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
<th>Access with BCI Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x0000 7FFF</td>
<td>32K</td>
<td>Image Data Transfer Area</td>
<td></td>
</tr>
<tr>
<td>0x0000 8000 – 0x0000 807F</td>
<td>64</td>
<td>PCI Configuration Registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 8080 – 0x0000 80FF</td>
<td>64</td>
<td>AGP Configuration Registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 8100 – 0x0000 817F</td>
<td>128</td>
<td>Packed 2D Enhanced Registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 8180 – 0x0000 82E4</td>
<td>164</td>
<td>Streams Processor Registers</td>
<td>Yes</td>
</tr>
<tr>
<td>0x0000 82E8</td>
<td>4</td>
<td>Current Y Position Register (2D engine)</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 8300 – 0x0000 83AF</td>
<td>176</td>
<td>Streams Processor extensions</td>
<td>Yes</td>
</tr>
<tr>
<td>0x0000 83B0 – 0x0000 83BF</td>
<td>16</td>
<td>VGA 3B? Registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 83C0 – 0x0000 83CF</td>
<td>16</td>
<td>VGA 3C? Registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 83D0 – 0x0000 83DF</td>
<td>16</td>
<td>VGA 3D? Registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 83E0 – 0x0000 8500</td>
<td>288</td>
<td>Unused</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 8504 – 0x0000 8510</td>
<td>16</td>
<td>System Registers</td>
<td>Yes (except 8504)</td>
</tr>
<tr>
<td>0x0000 8514 – 0x0000 86E4</td>
<td>468</td>
<td>Unused</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 86E8 – 0x0000 F6FF</td>
<td>28K</td>
<td>Non-packed 2D registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 F700 – 0x0000 FEFF</td>
<td>2K</td>
<td>Unused</td>
<td>No</td>
</tr>
<tr>
<td>0x0000 FF00 – 0x0000 FFFF</td>
<td>256</td>
<td>LPB/VIP Registers</td>
<td>Yes</td>
</tr>
<tr>
<td>0x0001 0000 – 0x0002 FFFF</td>
<td>128K</td>
<td>Burst Command Data</td>
<td></td>
</tr>
<tr>
<td>0x0003 0000 – 0x0004 84FF</td>
<td>97K</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>0x0004 8500 – 0x0004 88FF</td>
<td>1024</td>
<td>3D Registers</td>
<td>No</td>
</tr>
<tr>
<td>0x0004 8900 – 0x0004 89FF</td>
<td>256</td>
<td>Motion Compensation Registers</td>
<td>No (Note 1)</td>
</tr>
<tr>
<td>0x0004 8A00 – 0x0004 8AFF</td>
<td>512</td>
<td>MEU Registers</td>
<td>No (Note 1)</td>
</tr>
<tr>
<td>0x0004 8C00 – 0x0004 8cff</td>
<td>256</td>
<td>Configuration and Status Registers</td>
<td>Yes (except 8C20-8C24)</td>
</tr>
<tr>
<td>0x0004 8D00 - 0x000F FFFF</td>
<td>15.7M</td>
<td>Unused (not available in Rev. B)</td>
<td></td>
</tr>
</tbody>
</table>

When registers are being directly accessed via MMIO (not using the BCI), the BCI function should be idle for access to the registers indicated by "No" in the right column of the above table.

Note 1: MMIO writes to motion compensation registers must only be done with BCI disabled. Reads can be done with BCI enabled.

PCI Base Address 1 (PCI14) - Mapping 0 (Rev. A or Rev B)

Bits 31-27 of the base address are programmable, resulting in a 128-MByte address space being claimed. The default base address is 6000 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x001F FFFF</td>
<td>32M</td>
<td>Linear Frame Buffer Access Area</td>
</tr>
<tr>
<td>0x0200 0000 – 0x022F FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 0</td>
</tr>
<tr>
<td>0x0300 0000 – 0x03FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 1</td>
</tr>
<tr>
<td>0x0400 0000 – 0x04FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 2</td>
</tr>
<tr>
<td>0x0500 0000 – 0x06FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 3</td>
</tr>
<tr>
<td>0x0600 0000 – 0x06FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 4</td>
</tr>
<tr>
<td>0x0700 0000 – 0x0701 FFFF</td>
<td>128K</td>
<td>Burst Command Data</td>
</tr>
</tbody>
</table>
Rev A Mapping 1

PCI Base Address 1 (PCI14) - Mapping 1) (Rev A)
Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6000 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x01FF FFFF</td>
<td>16M</td>
<td>First 16M Linear Frame Buffer Access Area</td>
</tr>
</tbody>
</table>

PCI Base Address 2 (PCI18) - Mapping 1) (Rev A)
Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6800 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x01FF FFFF</td>
<td>16M</td>
<td>Second 16M Linear Frame Buffer Access Area</td>
</tr>
</tbody>
</table>

PCI Base Address 3 (PCI1C) - Mapping 1) (Rev A)
Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6200 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x01FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 0</td>
</tr>
</tbody>
</table>

PCI Base Address 4 (PCI20) - Mapping 1) (Rev A)
Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6300 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x01FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 1</td>
</tr>
</tbody>
</table>

PCI Base Address 5 (PCI24) - Mapping 1) (Rev A)
Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6400 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from the base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x01FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 2</td>
</tr>
</tbody>
</table>

Rev. B Mapping 1

PCI Base Address 1 (PCI14) - Mapping 1) (Rev B)
Bits 31-25 of the base address are programmable, resulting in a 32-MByte address space being claimed. The default base address is 6000 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x02FF FFFF</td>
<td>32M</td>
<td>32M Linear Frame Buffer Access Area</td>
</tr>
</tbody>
</table>

PCI Base Address 2 (PCI18) - Mapping 1) (Rev. B)
Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6800 0008H (prefetching allowed).

<table>
<thead>
<tr>
<th>Offset from Base</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000 – 0x01FF FFFF</td>
<td>16M</td>
<td>Tiled Addressing Aperture 0</td>
</tr>
</tbody>
</table>

PCI Base Address 3 (PCI1C) - Mapping 1) (Rev. B)
Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6200 0008H (prefetching allowed).
PCI Base Address 4 (PCI20) - Mapping 1) (Rev B)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6300 0008H (prefetching allowed).

Offset from the base Size Description
0x0000 0000 – 0x01FF FFFF 16M Tiled Addressing Aperture 1

PCI Base Address 5 (PCI24) - Mapping 1) (Rev. B)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6400 0008H (prefetching allowed).

Offset from the base Size Description
0x0000 0000 – 0x01FF FFFF 16M Tiled Addressing Aperture 2

1.3 BURST COMMAND INTERFACE (BCI)

This interface allows bursts of commands (register writes) and data to be transferred from the CPU, PCI bus and/or system memory to the Savage4 registers and the frame buffer. The BCI is the most efficient method of generating most of the display effects possible with Savage4. Its use minimizes CPU and memory bandwidth usage, minimizes system bus traffic and provides automatic coordination/synchronization among competing tasks.

The BCI interface is enabled by MM48C18_3 = 1. A series of 32-bit writes containing instructions and data is then burst to Savage4 using any address in the 128K range from 101 000H to 102 FFFFH. Each 32-bit write fills one slot of a 32-slot FIFO (if there is space), from which the data is automatically read out, interpreted and executed. If the on-chip queue fills up, additional BCI writes can be stored in an overflow circular buffer located in the frame buffer at an address specified by MM48C14_13-0. Its size is specified by MM48C14_31-29.

Software needs to monitor the queue status to determine if there is a shortage or excess of command data. A read of MM48C0C_18-0 provides the number of filled entries in the command queue (both on- and off-chip). To minimize CPU and system bus usage, Savage4 optionally provides this information via a read of cacheable system memory. This is called shadow status, and is enabled by setting MM48C0C_0 and MM48C18_1 to 1. The address of the start of the status information in system memory is programmed in MM48C0C_31_5. This status information consists of the data from Status Word registers 0-2. It is automatically written to system memory when the command buffer (on- and off-chip) is almost full (as specified by a watermark programmed in MM48C10_31-16) and when the command buffer is almost empty (as specified by a watermark programmed in MM48C10_15-0). The update can also be forced by an UpdateShadowStatus BCI command issued by software. As a result of this update policy, the shadow status will normally be accurate for a only a short time. Exact status is always available by direct reading of the Status Word registers.
Section 2: VGA Register Descriptions

In the following register descriptions, 'U' stands for undefined or unused and 'R' stands for reserved (write = 0, read = U). A question mark in an address stands for a hexadecimal value of either 'B' or 'D'. If bit 0 of the Miscellaneous Output Register (3C2H, Write) is set to 1, the address is based at 3DxH for color emulation. If this bit is reset to 0, the address is based at 3BxH for monochrome emulation.

2.1 GENERAL REGISTERS

This section describes general input status and output control registers.

Miscellaneous Output Register

- **Write Only**
 - Address: 3C2H
- **Read Only**
 - Address: 3CCH
- **Power-On Default:** 00H

This register controls miscellaneous output signals. A hardware reset sets all bits to zero.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>IOA SEL - I/O Address Select</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 = Monochrome emulation. Address based at 3Bx</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 = Color emulation. Address based at 3Dx</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>HSP - Select Negative Horizontal Sync Pulse</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 = Select a positive horizontal retrace sync pulse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Select a negative horizontal retrace sync pulse</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PGS - Select High 64K Page</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 = Select the low 64K page of memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Select the high 64K page of memory</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SEL - Select Clock</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 = Select 25.175 MHz DCLK for 640 pixels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Select 28.322 MHz DCLK for 720 pixels</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CLK - Select Clock</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>ENB - Enable CPU Display Memory Access</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 = Disable access of the display memory from the CPU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Enable access of the display memory from the CPU</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>IOA SEL - I/O Address Select</td>
<td>0</td>
</tr>
</tbody>
</table>

A setting of either 00b or 01b causes the appropriate values to be programmed into the DCLK PLL registers if bit 1 of SR15 is set to 1.
Feature Control Register

Write Only Address: 3?AH
Read Only Address: 3CAH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>=0</td>
<td>=0</td>
<td>=0</td>
<td>=0</td>
<td>VSSL</td>
<td>=0</td>
<td>=0</td>
<td>=0</td>
</tr>
</tbody>
</table>

Bits 2-0 Reserved = 0
Bit 3 VSSL - Vertical Sync Type Select
 0 = Enable normal vertical sync output to the monitor
 1 = The 'vertical sync' output is the logical OR of 'vertical sync' and 'vertical active display enable' (an internal signal)
Bits 7-4 Reserved = 0

Input Status 0 Register

Read Only Address: 3C2H
Power-On Default: Undefined

This register indicates the status of the VGA adapter.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT</td>
<td>INTPE</td>
<td>=0</td>
<td>=0</td>
<td>MON</td>
<td>SEN</td>
<td>=0</td>
<td>=0</td>
</tr>
</tbody>
</table>

Bits 3-0 Reserved = 0
Bit 4 MON SEN - Monitor Sense Status
 0 = The internal SENSE signal is a logical 0
 1 = The internal SENSE signal is a logical 1
Bits 6-5 Reserved = 0
Bit 7 CRT INTPE - CRT Interrupt Status
 0 = Vertical retrace interrupt cleared
 1 = Vertical retrace interrupt pending

Input Status 1 Register

Read Only Address: 3?AH
Power-On Default: Undefined

This register indicates video sync timing and video wraparound.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>=0</td>
<td>=0</td>
<td>TST-VDT</td>
<td>1.0</td>
<td>VSY</td>
<td>=1</td>
<td>R</td>
<td>DTM</td>
</tr>
</tbody>
</table>

Bit 0 DTM - Display Mode Inactive
 0 = The display is in the display mode.
 1 = The display is not in the display mode. Either the horizontal or vertical retrace period is active
Bit 1 Reserved = 0
Bit 2 Reserved = 1
Bit 3 VSY - Vertical Sync Active
0 = Display is in the display mode
1 = Display is in the vertical retrace mode

Bits 5-4 TST-VDT - Video Signal Test

Video Data Feedback 1,0. These bits are feedback video signals to do read back tests. These bits are selectively connected to two of the eight color outputs of the attribute controller. Bits 5 and 4 of the color plane enable register (AR12) control the multiplexer for this video output observation.

Bits 7-6 Reserved = 0

Video Subsystem Enable Register

Write Only
Address: 3C3H
Power-On Default: 00H

This register is only accessible via its I/O address (not MMIO). For enabling via MMIO, use MM8510_0.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>CF ENB</td>
</tr>
</tbody>
</table>

Bit 0 CF ENB - Chip Function Enable
0 = Chip function disabled
1 = Chip function enabled

Bits 7-1 Reserved
2.2 SEQUENCER REGISTERS

The sequencer registers (including the S3 extensions) are located at two address spaces. These registers are accessed by first writing sequencer register index at address 3C4H and then writing to or reading from the data register at 3C5H. A word write of both address and data at 3C4H can also be performed.

Sequencer Index Register

Read/Write Address: 3C4H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>SEQUENCER REGISTER INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0
SEQUENCER REGISTER INDEX
Value = Index of the sequencer register where data is to be accessed
Bits 7-5
Reserved

Sequencer Data Register

Read/Write Address: 3C5H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQUENCER REGISTER DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
SEQUENCER REGISTER DATA
Value = Data read from or to be written to the sequencer register at the index programmed in 3C4H.

Reset Register (SR0)

Read/Write Address: 3C5H, Index 00H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>SYN RST</td>
<td>ASY RST</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0
ASY RST - Asynchronous Reset
This bit is for VGA software compatibility only. It has no function for Savage4

Bit 1
SYN RST - Synchronous Reset
This bit is for VGA software compatibility only. It has no function for Savage4.

Bits 7-2
Reserved = 0
Clocking Mode Register (SR1)

Read/Write Address: 3C5H, Index 01H
Power-On Default: 00H

This register controls the operation mode of dot clock and character clock.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>SCR</td>
<td>SHF</td>
<td>CCK</td>
<td>SHF</td>
<td>LD</td>
<td>8DC</td>
</tr>
</tbody>
</table>

Bit 0 8DC - 8 Dot Clock Select
0 = Character clocks 9 dots wide are generated
1 = Character clocks 8 dots wide are generated

Bit 1 Reserved = 0

Bit 2 SHF LD - Load Serializers Every Second Character Clock
0 = Load the video serializer every character clock
1 = Load the video serializers every other character clock

Bit 3 CCK 1/2 - Internal Character Clock/2
0 = Internal character clock is unchanged
1 = Halve the frequency of the internal character clock

This bit is used for horizontal pixel doubling.

Bit 4 SHF 4 - Load Serializers Every Fourth Character Clock
0 = Load the serializers every character clock cycle
1 = Load the serializers every fourth character clock cycle

Bit 5 SCR OFF - Screen Off
0 = Screen is turned on.
1 = Screen is turned off

Bits 7-6 Reserved = 0

Enable Write Plane Register (SR2)

Read/Write Address: 3C5H, Index 02H
Power-On Default: 00H

This register selects write protection or write permission for CPU write access into video memory.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>EN.WT.PL.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 EN.WT.PL. - Enable Write to a Plane
0 = Disables writing into the corresponding plane
1 = Enables the CPU to write to the corresponding color plane

Bits 7-4 Reserved = 0
Character Font Select Register (SR3)

Read/Write Address: 3C5H, Index 03H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SLA</td>
<td>SLB</td>
<td>SLA</td>
<td>SLB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In text modes, bit 3 of the attribute byte normally turns the foreground intensity on or off. This bit can be redefined to be a switch between two character sets. The switch is enabled when there is a difference between the value of character font select A and character font select B bits. Memory Mode (SR4) register bit 1 = 1 (extended memory) enables all bits of this function; otherwise character fonts 0 and 4 are available. 256 KBytes of video memory support 8 character sets. This register is reset to 0 asynchronously during a system reset.

Bits 4, 1-0 SLB - Select Font B
Value = the portion of plane 2 used to generate text character fonts when bit 3 of the attribute byte is a logical 1, according to the following table:

<table>
<thead>
<tr>
<th>Bits 4, 1-0</th>
<th>Font Table Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>First 8K of plane 2</td>
</tr>
<tr>
<td>001</td>
<td>Third 8K of plane 2</td>
</tr>
<tr>
<td>010</td>
<td>Fifth 8K of plane 2</td>
</tr>
<tr>
<td>011</td>
<td>Seventh 8K of plane 2</td>
</tr>
<tr>
<td>100</td>
<td>Second 8K of plane 2</td>
</tr>
<tr>
<td>101</td>
<td>Fourth 8K of plane 2</td>
</tr>
<tr>
<td>110</td>
<td>Sixth 8K of plane 2</td>
</tr>
<tr>
<td>111</td>
<td>Eighth 8K of plane 2</td>
</tr>
</tbody>
</table>

Bits 5, 3-2 SLA - Select Font A
Value = the portion of plane 2 used to generate text character fonts when bit 3 of attribute byte is a logical 0, according to the same table as the character font select A.

Bits 7-6 Reserved = 0

Memory Mode Control Register (SR4)

Read/Write Address: 3C5H, Index 04H
Power-On Default: 00H

This register controls CPU memory addressing mode.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHN</td>
<td>SEQ</td>
<td>MOD</td>
<td>EXT</td>
<td>MEM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 Reserved = 0
Bit 1 EXT MEM - Extended Memory Access
0 = Memory access restricted to 16/32 KBytes
1 = Allows complete memory access to 256 KBytes. Required for VGA

Bit 2 SEQ MOD - Sequential Addressing Mode
0 = Enables the odd/even addressing mode. Even addresses access planes 0 and 2. Odd addresses access planes 1 and 3
1 = Directs the system to use a sequential addressing mode

This bit affects only CPU write data accesses into video memory. Bit 3 of this register must be 0 for this bit to be effective.
Bit 3 CHN 4M - Select Chain 4 Mode
0 = Enables odd/even mode
1 = Chain 4 mode

This bit selects modulo 4 addressing for CPU access to display memory. A logical 1 directs the two lower order bits of the CPU address used to select the plane in video memory to be accessed as follows:

<table>
<thead>
<tr>
<th>A1</th>
<th>A0</th>
<th>Plane Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Bits 7-4 Reserved = 0
2.3 CRT CONTROLLER REGISTERS

The CRT controller registers (including S3 extensions) are located at two addresses. These registers are accessed by first writing to the index register of the CRT controller and then accessing the data register. The index register is located at address 3?4H and the data register is at 3?5H. Which address is used (3BX or 3DX) depends on bit 0 of the Miscellaneous Output register at 3C2H. A word write of both address and data at 3?4H can also be performed.

CRT Controller Index Register

Read/Write Address: 3?4H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CRTC REGISTER INDEX</td>
</tr>
</tbody>
</table>

Bits 7-0 CRTC REGISTER INDEX

Value = Index of the CRTC register to be accessed

CRT Controller Data Register

Read/Write Address: 3?5H
Power-On Default: Undefined

This register is the data port for the CRT controller register indexed by the CRT Controller Address register.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CRTC REGISTER DATA</td>
</tr>
</tbody>
</table>

Bits 7-0 CRTC REGISTER DATA

Value = Data read from or to be written to the CRTC controller register at the index specified in 3?4H.

Horizontal Total Register (CR0)

Read/Write Address: 3?5H, Index 00H
Power-On Default: Undefined

This register defines the number of character clocks from HSYNC going active to the next HSYNC going active. In other words, it is the total time required for both the displayed and non-displayed portions of a single scan line. The value in this register may affect the value required in CR3B.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HORIZONTAL TOTAL 7-0</td>
</tr>
</tbody>
</table>

Bits 7-0 HORIZONTAL TOTAL 7-0

11-bit Value = (number of character clocks in one scan line) - 5.

Bit 8 of this value is bit 0 of CR5D. Bits 10-9 are CR5F_1-0.
Horizontal Display End Register (CR1)

Read/Write Address: 3?5H, Index 01H
Power-On Default: Undefined

This register defines the number of character clocks for one line of the active display.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HORIZONTAL DISPLAY END 7-0

Bits 7-0 HORIZONTAL DISPLAY END 7-0

11-bit Value = (number of character clocks of active display) - 1.

Bit 8 of this value is bit 1 of CR5D. Bits 10-9 are CR5F_3-2.

Start Horizontal Blank Register (CR2)

Read/Write Address: 3?5H, Index 02H
Power-On Default: Undefined

This register specifies the value of the character clock counter at which the BLANK signal is asserted.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

START HORIZONTAL BLANK 7-0

Bits 7-0 START HORIZONTAL BLANK 7-0

11-bit Value = character clock value at which horizontal blanking begins.

Bit 8 of this value is bit 2 of CR5D. Bits 10-9 are CR5F_5-4.

End Horizontal Blank Register (CR3)

Read/Write Address: 3?5H, Index 03H
Power-On Default: Undefined

This register determines the pulse width of the BLANK signal and the display enable skew.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DSP-SKW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END HORIZONTAL BLANK 4-0

Bits 4-0 END HORIZONTAL BLANK 4-0

6-bit Value = least significant 6 bits of the character clock counter value at which time horizontal blanking ends

To obtain this value, add the desired BLANK pulse width in character clocks to the Start Horizontal Blank value, which is also in character clocks. Bit 5 of this value is CR5_7. If the horizontal blank period is more than 64 character clocks, CR5D_3 must be set to 1.

If CR5D_7 is set to 1 for 1280x1024x24 mode, CR5B_5-4 become bits 7-6 of this value and CR5D_3 is set to 1 when the blank period is greater than 256 character clocks.
Bits 6-5
DSP-SKW - Display Skew
- 00 = Zero character clock skew
- 01 = One character clock skew
- 10 = Two character clock skew
- 11 = Three character clock skew

These two bits determine the amount of display enable skew. Display enable skew control provides sufficient time for the CRT Controller to access the display buffer to obtain a character and attribute code, access the character generator font, and then go through the Horizontal Pixel Panning register in the Attribute Controller. Each access requires the display enable signal to be skewed one character clock unit so the video output is synchronous with the HSYNC and VSYNC signals. The bit values and amount of skew are shown in the following table:

| Bit 7 | Reserved |

Start Horizontal Sync Position Register (CR4)

Read/Write Address: 3F5H, Index 04H

Power-On Default: Undefined

This register is used to adjust the screen center horizontally and to specify the character position at which HSYNC becomes active.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>START HORIZONTAL SYNC POSITION 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 **START HORIZONTAL SYNC POSITION 7-0

11-bit Value = character clock counter value at which HSYNC becomes active.

Bit 8 of this value is bit 4 of CR5D. Bits 10-9 are SR5F_7-6.

End Horizontal Sync Position Register (CR5)

Read/Write Address: 3F5H, Index 05H

Power-On Default: Undefined

This register specifies when the HSYNC signal becomes inactive and the horizontal skew.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHB</td>
<td>HOR-SKW</td>
<td>END HORIZONTAL SYNC POS 4-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 **END HORIZONTAL SYNC POS 4-0

5-bit Value = 5 least significant bits of the character clock counter value at which time HSYNC becomes inactive.

To obtain this value, add the desired HSYNC pulse width in character clocks to the Start Horizontal Sync Position value, also in character clocks. If the horizontal sync period is more than 32 character clocks, bit 5 of CR5D must be set to 1.

If CR5D_7 is set to 1 for 1280x1024x24 mode, CR5B_7-6 become bits 6-5 of this value and CR5D_5 is set to 1 when the sync period is greater than 128 character clocks.
Bits 6-5 HOR-SKW - Horizontal Skew
00 = Zero character clock skew
01 = One character clock skew
10 = Two character clock skew
11 = Three character clock skew

These bits control the skew of the HSYNC signal. A binary 00 equals no HSYNC delay. For some modes, it is necessary to provide an HSYNC signal that takes up the entire blanking interval. Some internal timings are generated by the falling edge of the HSYNC signal. To guarantee the signals are latched properly, HSYNC is asserted before the end of the display enable signal, and then skewed several character clock times to provide the proper screen centering.

Bit 7 EHB B5 - End Horizontal Blanking Bit 5

Vertical Total Register (CR6)

Read/Write Address: 375H, Index 06H
Power-On Default: Undefined

This register specifies the number of scan lines from one VSYNC active to the next VSYNC active. The scan line counter resets to 0 at this point.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Total 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 VERTICAL TOTAL 7-0

11-bit Value = (number of scan lines from VSYNC active to the next VSYNC active) - 2

Bit 8 is CR7_0. Bit 9 is CR7_5. Bit 10 is CR5E_0.

CRTC Overflow Register (CR7)

Read/Write Address: 375H, Index 07H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRS</td>
<td>VDE</td>
<td>VT</td>
<td>LCM</td>
<td>SVB</td>
<td>VRS</td>
<td>VDE</td>
<td>VT</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Bit 0 Bit 8 of the Vertical Total register (CR6)
Bit 1 Bit 8 of the Vertical Display End register (CR12)
Bit 2 Bit 8 of the Vertical Retrace Start register (CR10)
Bit 3 Bit 8 of the Start Vertical Blank register (CR15)
Bit 4 Bit 8 of the Line Compare register (CR18)
Bit 5 Bit 9 of the Vertical Total register (CR6)
Bit 6 Bit 9 of the Vertical Display End register (CR12)
Bit 7 Bit 9 of the Vertical Retrace Start register (CR10)
Preset Row Scan Register (CR8)

Read/Write Address: 3?5H, Index 08H
Power-On Default: Undefined

This register is used for the pixel scrolling and panning, and text formatting and vertical scrolling.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>BYTE-PAN</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PRE-SET ROW SCAN COUNT</td>
</tr>
</tbody>
</table>

Bits 4-0 PRE-SET ROW SCAN COUNT
Value = starting row within a character cell for the first character row displayed after vertical retrace
This allows a partial character row to be displayed at the top of the display and is used for scrolling.

Bits 6-5 BYTE-PAN
Value = number of bytes to pan
The number of pixels to pan is specified in AR13.

Bit 7 Reserved = 0

Maximum Scan Line Register (CR9)

Read/Write Address: 3?5H, Index 09H
Power-On Default: Undefined

This register specifies the number of scan lines per character row and provides one scanning control bit and two overflow bits.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBL SCN</td>
<td>LCM 9</td>
<td>SVB 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAX SCAN LINE</td>
</tr>
</tbody>
</table>

Bits 4-0 MAX SCAN LINE
Value = (number of scan lines per character row) - 1

Bit 5 SVB 9 - Bit 9 of the Start Vertical Blank Register (CR15)
Bit 6 LCM 9 - Bit 9 of the Line Compare Register (CR18)
Bit 7 DBL SCN
0 = Normal operation
1 = Enables double scanning operation
When this bit is set, each line is displayed twice by repeating the row scan counter and video memory address. Vertical parameters in the CRT controller are not affected.
Cursor Start Scan Line Register (CRA)

Read/Write Address: 3?5H, Index 0AH
Power-On Default: Undefined

The cursor start register defines the row scan of a character line where the cursor begins.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>CSR OFF</td>
<td>CSR CURSOR START SCAN LINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 CSR CURSOR START SCAN LINE

Value = (starting cursor row within the character cell) - 1

When the cursor start register is programmed with a value greater than the cursor end register, no cursor is generated.

Bit 5 CSR OFF

0 = Turns on the text cursor
1 = Turns off the text cursor

Bits 7-6 Reserved = 0

Cursor End Scan Line Register (CRB)

Read/Write Address: 3?5H, Index 0BH
Power-On Default: Undefined

This register defines the row scan of a character line where the cursor ends.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>CSR-SKW</td>
<td>1 0</td>
<td>CURSOR END SCAN LINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 CURSOR END SCAN LINE

Value = ending scan line number within the character cell for the text cursor

If the value of the cursor start scan line is greater than the value of cursor end line, then no cursor is generated.

Bits 6-5 CSR-SKW - Cursor Skew

00 = Zero character clock skew
01 = One character clock skew
10 = Two character clock skew
11 = Three character clock skew

These bits control the delay skew of the cursor signal. Cursor skew delays the text cursor by the selected number of clocks. For example, a skew of 1 moves the cursor right one character position on the screen.

Bit 7 Reserved = 0
Start Address High Register (CRC)

Read/Write
Address: 3?5H, Index 0CH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISPLAY START ADDRESS (HIGH)

Bits 7-0
DISPLAY START ADDRESS (HIGH)

23-bit Value = the first address after a vertical retrace at which the display on the screen begins on each screen refresh

These along with bits 6-0 of CR69 are the high order start address bits.

Start Address Low Register (CRD)

Read/Write
Address: 3?5H, Index 0DH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISPLAY START ADDRESS (LOW)

Bits 7-0
DISPLAY START ADDRESS (LOW)

Value = the 8 low order bits of the start address

Cursor Location Address High Register (CRE)

Read/Write
Address: 3?5H, Index 0EH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CURSOR LOCATION ADDRESS (HIGH)

Bits 7-0
CURSOR LOCATION ADDRESS (HIGH)

23-bit Value = the cursor location address of the video memory where the text cursor is active

This register along with bits 6-0 of CR69 are the high order bits of the address.
Cursor Location Address Low Register (CRF)

Read/Write Address: 3?5H, Index 0FH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CURSOR LOCATION ADDRESS (LOW)

Bits 7-0 CURSOR LOCATION ADDRESS (LOW)

Value = the 8 low order bits of the cursor location address.

Vertical Retrace Start Register (CR10)

Read/Write Address: 3?5H, Index 10H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VERTICAL RETRACE START 7-0

Bits 7-0 VERTICAL RETRACE START 7-0

11-bit Value = scan line counter value at which VSYNC becomes active

Bit 8 is CR7_2. Bit 9 is CR7_7. Bit 10 is CR5E_4.

Vertical Retrace End Register (CR11)

Read/Write Address: 3?5H, Index 11H
Power-On Default: 00H

This register controls the vertical interrupt and CR0-7

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCK</td>
<td>REF</td>
<td>DIS</td>
<td>CLR</td>
<td>VINT</td>
<td>VINT</td>
<td>VERTICAL RETRACE END</td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 VERTICAL RETRACE END

Value = least significant 4 bits of the scan line counter value at which VSYNC goes inactive

To obtain this value, add the desired VSYNC pulse width in scan line units to the CR10 value, also in scan line units. The 4 least significant bits of this sum are programmed into this field. This allows a maximum VSYNC pulse width of 15 scan line units.

Bit 4 CLR VINT - Clear Vertical Retrace Interrupt

0 = Vertical retrace interrupt cleared
1 = The flip-flop is able to catch the next interrupt request

At the end of active vertical display time, a flip-flop is set for a vertical interrupt. The output of this flip-flop goes to the system interrupt controller. The CPU has to reset this flip-flop by writing a logical 0 to this bit while in the interrupt process, then set the bit to 1 to allow the flip-flop to catch the next interrupt request. Do not change the other bits in this register. This bit is cleared to 0 by the BIOS during a mode set, a reset, or power-on.

Bit 5 DIS VINT - Disable Vertical Interrupt

0 = Vertical retrace interrupt enabled if CR32_4 = 1
1 = Vertical interrupt disabled. This bit is cleared to 0 by the BIOS during a mode set, a reset, or power-on
Bit 6 Reserved
Bit 7 LOCK R0-7 - Lock Writes to CRT Controller Registers
 0 = Writing to all CRT Controller registers enabled
 1 = Writing to all bits of CR0-CR7 except CR7_4 disabled

This bit is set to 1 by the BIOS during a mode set, a reset or power-on

Vertical Display End Register (CR12)

Read/Write Address: 3?5H, Index 12H
Power-On Default: Undefined

The vertical display enable end register defines 8 bits of the 10-bit address of the scan line where the display on the screen ends.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERTICAL DISPLAY END 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 7-0 VERTICAL DISPLAY END 7-0

11-bit Value = (number of scan lines of active display) + 1

Bit 8 and Bit 9 are bits 1 and 6 of CR7. Bit 10 is CR5E_1.

Offset Register (CR13)

Read/Write Address: 3?5H, Index 13H
Power-On Default: Undefined

This register specifies the logical line width of the screen and is sometimes called the screen pitch. The starting memory address for the next display row is larger than the current row by two, four or eight times this amount. If these bits are 00b, bit 2 of CR43 is extension bit 8 of this register.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGICAL SCREEN WIDTH 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 LOGICAL SCREEN WIDTH 7-0

10-bit Value = quantity that is multiplied by 2 (word mode), 4 (doubleword mode) or 8 (quadword mode) to specify the difference between the starting byte addresses of two consecutive scan lines.

The addressing mode is specified by bit 6 of CR14 and bit 3 of CR17. Setting bit 3 of CR31 to 1 forces doubleword mode. CR51_5-4 are extension bits 9-8 of this register.
Underline Location Register (CR14)

Read/Write Address: 375H, Index 14H
Power-On Default: Undefined

This register specifies the horizontal row scan position of underline and display buffer addressing modes.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBW</td>
<td>MOD</td>
<td>CNT</td>
<td>BY4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERLINE LOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 UNDERLINE LOCATION

- 5-bit Value = (scan line count of a character row on which an underline occurs) -1

Bit 5 CNT BY4 - Select Count by 4 Mode

- 0 = The memory address counter depends on bit 3 of CR17 (count by 2)
- 1 = The memory address counter is incremented every four character clocks

The CNT BY4 bit is used when double word addresses are used.

Bit 6 DBW MOD - Select Doubleword Mode

- 0 = The memory addresses are byte or word addresses
- 1 = The memory addresses are doubleword addresses

Bit 7 Reserved = 0

Start Vertical Blank Register (CR15)

Read/Write Address: 375H, Index 15H
Power-On Default: Undefined

This register specifies the scan line at which the vertical blanking period begins.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>START VERTICAL BLANK 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 START VERTICAL BLANK 7-0

- 11-bit value = (scan line count at which BLANK becomes active) - 1

- Bit 8 is CR7_3, Bit 9 is CR9_5, Bit 10 is CR5E_2
End Vertical Blank Register (CR16)

Read/Write Address: 375H, Index 16H
Power-On Default: Undefined

This register specifies the scan line count value when the vertical blank period ends.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>END VERTICAL BLANK</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 END VERTICAL BLANK

Value = least significant 8 bits of the scan line counter value at which vertical blanking ends

To obtain this value, add the desired width of the vertical blanking pulse in scan lines to \[(value in the Start Vertical Blank register)-1\], also in scan lines. The 8 least significant bits of this sum are programmed into this field. This allows a maximum vertical blanking pulse of 255 scan line units.

CRTC Mode Control Register (CR17)

Read/Write Address: 375H, Index 17H
Power-On Default: 00H

This register is a multifunction control register, with each bit defining a different specification.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST</td>
<td>BYT E</td>
<td>MOD</td>
<td>ADW</td>
<td>16K = 0</td>
<td>WD MOD</td>
<td>VT X2</td>
<td>4BK HGC</td>
</tr>
</tbody>
</table>

Bit 0 2BK CGA - Select Bank 2 Mode for CGA Emulation

0 = Row scan counter bit 0 is substituted for memory address bit 13 during active display time
1 = Memory address bit 13 appears on the memory address output bit 13 signal of the CRT controller

This bit allows memory mapping compatibility with the IBM CGA graphics mode.

Bit 1 4BK HGC - Select Bank 4 Mode for HGA Emulation

0 = Row scan counter bit 1 is substituted for memory address bit 14 during active display time
1 = Memory address bit 14 appears on the memory address output bit 14 signal of the CRT controller

The combination of this bit and bit 0 of this register allows compatibility with Hercules HGC graphics memory mapping.

Bit 2 VT X2 - Select Vertical Total Double Mode

0 = Horizontal retrace clock selected
1 = Horizontal retrace clock divided by two selected

This bit selects horizontal retrace clock or horizontal retrace clock divided by two as the clock that controls the vertical timing counter. If the vertical retrace counter is clocked with the horizontal retrace clock divided by 2, then the vertical resolution is double.

Bit 3 WD MOD - Select Word Mode

0 = Memory address counter is clocked with the character clock input, and byte mode addressing for the video memory is selected
1 = Memory address counter is clocked by the character clock input divided by 2, and word mode addressing for the video memory is selected

Bit 4 Reserved = 0
Bit 5 ADW 16K - Address Wrap
0 = When word mode is selected by bit 6 of this register, memory address counter bit 13 appears on the memory
address output bit 0 signal of the CRT controller and the video memory address wraps around at 16 KBytes
1 = When word mode is selected by bit 6 of this register, memory address counter bit 15 appears on the memory
address output bit 0 signal of the CRT controller

This bit is useful in implementing IBM CGA mode.

Bit 6 BYTE MODE - Select Byte Addressing Mode
0 = Word mode shifts all memory address counter bits down one bit, and the most significant bit of the counter
appears on the least significant bit of the memory address output
1 = Byte address mode

Bit 7 RST - Hardware Reset
0 = Vertical and horizontal retrace pulses always inactive
1 = Vertical and horizontal retrace pulses enabled

This bit does not reset any other registers or outputs.

Line Compare Register (CR18)

Read/Write Address: 375H, Index 18H
Power-On Default: Undefined

This register is used to implement a split screen function. When the scan line counter value is equal to the content of this register,
the memory address counter is cleared to 0. The linear address counter then sequentially addresses the display buffer starting at
address 0. Each subsequent row address is determined by the addition of the Offset (CR13) register content.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE COMPARE POSITION 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 7-0 LINE COMPARE POSITION 7-0
11-bit Value = number of scan lines at which the screen is split into screen A and screen B

CPU Latch Data Register (CR22)

Read Only Address: 375H, Index 22H
Power-On Default: Undefined

This register is used to read the CPU latch in the Graphics Controller.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPHICS CONTROLLER CPU LATCH - N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 GRAPHICS CONTROLLER CPU LATCH - N

Bits 1-0 of GR4 select the latch number N (3-0) of the CPU Latch.
Attribute Index Register (CR24)

Read Only Address: 375H, Index 24H, 26H
Power-On Default: Undefined

This register is used to read the value of the Attribute Controller Index register and its associated internal address flip-flop (AFF). It can be read at either index 24H or 26H.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFF</td>
<td>= 0</td>
<td>ENV</td>
<td>ATTRIBUTE CONTROLLER INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 ATTRIBUTE CONTROLLER INDEX

This value is the Attribute Controller Index Data at I/O port 3C0H.

Bit 5 ENV - Enable Video Display

This is the setting of bit 5 of 3C0H, indicating video display enabled status (1 = enabled).

Bit 6 Reserved = 0

Bit 7 AFF

Inverted Internal Address flip-flop
2.4 GRAPHICS CONTROLLER REGISTERS

The graphics controller registers are located at a two byte I/O address space. These registers are accessed by first writing an index to the Graphics Address register (at 3CEH) and then accessing the Data register (at 3CFH).

Graphics Controller Index Register

Read/Write Address: 3CEH
Power-On Default: Undefined

This register is loaded with a binary index value that determines which graphics controller register will be accessed. This value is referred to as the “Index Number” of the GR register (GR0-6).

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td></td>
<td></td>
<td></td>
<td>GR CONT ADDRESS</td>
</tr>
</tbody>
</table>

Bits 3-0 GR CONT ADDRESS - Graphics Controller Register Index
Value = Index of the register where data is to be accessed.

Bits 7-4 Reserved = 0

Graphics Controller Data Register

Read/Write Address: 3CFH
Power-On Default: Undefined

This register is the data port for the graphics controller register indexed by the Graphics Controller Index register.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GRAPHICS CONTROLLER DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 7-0 GRAPHICS CONTROLLER DATA
Value = Data to the Graphics Controller register indexed by the graphics controller address
Set/Reset Data Register (GR0)

Read/Write Address: 3CFH, Index 00H
Power-On Default: Undefined

This register represents the value written to all 8 bits of the respective memory plane when the CPU executes a memory write in write modes 0 and 3.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SET/RESET DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 SET/RESET DATA

Value = the color value for CPU memory write operations

In write mode 0, the set/reset data can be enabled on the corresponding bit of the Enable Set/Reset Data register. In write mode 3, there is no effect on the Enable Set/Reset Data register.

Bits 7-4 Reserved = 0

Enable Set/Reset Data Register (GR1)

Read/Write Address: 3CFH, Index 01H
Power-On Default: Undefined

These bits enable the set/reset data, and affect write mode 0.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ENB SET/RST DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 ENB SET/RST DATA

When each bit is a logical 1, the respective memory plane is written with the value of the Set/Reset Data register. A logical 0 disables the set/reset data in a plane, and that plane is written with the value of CPU write data.

Bits 7-4 Reserved = 0

Color Compare Register (GR2)

Read/Write Address: 3CFH, Index 02H
Power-On Default: Undefined

These bits represent a 4-bit color value to be compared. In read mode 1, the CPU executes a memory read, the read data is compared with this value and returns the results. This register works in conjunction with the Color Don't Care register.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>COLOR COMPARE DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 COLOR COMPARE DATA

Value = reference color used to compare each pixel

Each of the 8-bit positions of the read data are compared across four planes and a logical 1 is returned in each bit position for which the colors match.

Bits 7-4 Reserved = 0
Raster Operation/Rotate Count Register (GR3)

Read/Write Address: 3CFH, Index 03H
Power-On Default: Undefined

This register selects a raster operation function and indicates the number of bits the CPU data will be rotated (right) on the video memory write operation.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RST-OP</td>
<td>1</td>
<td>0</td>
<td>ROTATE-COUNT</td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0
ROTATE-COUNT

Value = the number of positions to right-rotate data during a CPU memory write.
To write non-rotated data, the CPU must preset a count of 0.

Bits 4-3
RST-OP - Select Raster Operation

00 = No operation
01 = Logical AND with latched data
10 = Logical OR with latched data
11 = Logical XOR with latched data

The data written to memory can operate logically with the data already in the processor latches. This function is not available in write mode 1. The logical function specified by this register is applied to data being written to memory while in modes 0, 2 and 3.

Bits 7-5
Reserved = 0

Read Plane Select Register (GR4)

Read/Write Address: 3CFH, Index 04H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RD-PL-SL</td>
<td>Read Plane Select</td>
</tr>
</tbody>
</table>

Bits 1-0
RD-PL-SL - Read Plane Select

00 = Plane 0
01 = Plane 1
10 = Plane 2
11 = Plane 3

This is the memory plane from which the CPU reads data in read mode 0. These bits have no effect on the color compare read mode (read mode 1). In odd/even mode, bit 0 is ignored.

Bits 7-2
Reserved = 0
Graphics Controller Mode Register (GR5)

Read/Write Address: 3CFH, Index 05H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>Bit</th>
<th>SHF-MODE</th>
<th>256 O/E</th>
<th>MAP</th>
<th>RD CMP</th>
<th>WRT-MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bit 1-0

WRT-MD - Select Write Mode

These bits select the CPU write mode into video memory. The function of each mode is defined as follows:

00 = Write Mode 0

Each of four video memory planes is written with the CPU data rotated by the number of counts in the rotate register. If the Set/Reset register is enabled for any of four planes, the corresponding plane is written with the data stored in the set/reset register. Raster operations and bit mask registers are effective.

01 = Write Mode 1

Each of four video memory planes is written with the data in the processor latches. These latches are loaded during previous CPU read operations. Raster operation, rotate count, set/reset data, enable set/reset data and bit mask registers are not effective.

10 = Write Mode 2

Memory planes 0-3 are filled with 8 bits of the value of CPU write data bits 0-3, respectively. For example, if write data bit 0 is a 1, eight 1's are written to memory plane 0. The data on the CPU data bus is treated as the color value. The Bit Mask register is effective as the Mask register. A logical 1 in the Bit Mask register sets the corresponding pixel in the addressed byte to the color specified on the data bus. A logical 0 in the Bit Mask register sets the corresponding pixel in the addressed byte to the corresponding pixel in the processor latches. The Set/Reset, Enable Set/Reset and Rotate Count registers are ignored.

11 = Write Mode 3

Each of four video memory planes is written with 8 bits of the color value contained in the set/reset register for that plane. The Enable Set/Reset register is not effective. Rotated CPU write data is ANDed with the bit mask register to form an 8-bit value that performs the same function as the Bit Mask register in write modes 0 and 2. This write mode can be used to fill an area with a single color and pattern.

Bit 2

Reserved = 0

Bit 3

RD CMP - Enable Read Compare

0 = The CPU reads data from the video memory planes. The plane is selected by the Read Plane Select register.

This is called read mode 0

1 = The CPU reads the results of the logical comparison between the data in four video memory planes selected by the contents of the Color Don't Care register and the contents of the Color Compare register. The result is a 1 for a match and 0 for a mismatch on each pixel. This is called read mode 1

Bit 4

O/E MAP - Select Odd/Even Addressing

0 = Standard addressing.

1 = Odd/even addressing mode selected.

When this bit is set to 1, even CPU addresses access plane 0 and 2, while odd CPU addresses access plane 1 and 3. This option is useful for emulating the CGA compatible mode. The value of this bit should be the inverted value programmed in bit 2 of the Sequencer Memory Mode register (SR4). This bit affects reading of display memory by the CPU.
Bit 5 SHF-MODE - Select Odd/Even Shift Mode
0 = Normal shift mode
1 = The video shift registers in the graphics section are directed to format the serial data stream with even-numbered bits from both planes on the even-numbered planes and odd-numbered bits from both planes on the odd planes

Bit 6 SHF-MODE - Select 256 Color Shift Mode
0 = Bit 5 in this register controls operation of the video shift registers
1 = The shift registers are loaded in a manner that supports the 256 color mode

Bit 7 Reserved = 0

Memory Map Mode Control Register (GR6)
Read/Write Address: 3CFH, Index 06H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 TXT/GR - Select Text/Graphics Mode
0 = Text mode display addressing selected
1 = Graphics mode display addressing selected. When set to graphics mode, the character generator address latches are disabled

Bit 1 CHN O/E - Chain Odd/Even Planes
0 = A0 address bit unchanged
1 = CPU address bit A0 is replaced by a higher order address bit. The content of A0 determines which memory plan is to be addressed. A0 = 0 selects planes 0 and 2, and A0 = 1 selects planes 1 and 3. This mode can be used to double the address space into video memory

Bits 3-2 MEM-MAP - Memory Map Mode
00 = A0000H to BFFFFH (128 KBytes)
01 = A0000H to AFFFFH (64 KBytes)
10 = B0000H to B7FFFH (32 KBytes)
11 = B8000H to BFFFFH (32 KBytes)

These bits control the address mapping of video memory into the CPU address space.

Bits 7-4 Reserved = 0

Color Don't Care Register (GR7)
Read/Write Address: 3CFH, Index 07H
Power-On Default: Undefined

This register is effective in read mode 1, and controls whether the corresponding bit of the Color Compare Register is to be ignored or used for color comparison.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 COMPARE PLANE SEL - Compare Plane Select
0 = The corresponding color plane becomes a don't care plane when the CPU read from the video memory performed in read mode 1
1 = The corresponding color plane is used for color comparison with the data in the Color Compare register

Bits 7-4 Reserved = 0

CONFIDENTIAL

PROPRIETARY AND CONFIDENTIAL
Bit Mask Register (GR8)

Read/Write: Address: 3CFH, Index 08H
Power-On Default: Undefined

Any bit programmed to 0 in this register will cause the corresponding bit in each of four memory planes to be immune to change. The data written into memory in this case is the data which was read in the previous cycle, and was stored in the processor latches. Any bit programmed to 1 allows unimpeded writes to the corresponding bits in the plane.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT MASK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 BIT MASK

A logical 0 means the corresponding bit of each plane in memory is set to the corresponding bit in the processor latches. A logical 1 means the corresponding bit of each plane in memory is set as specified by other conditions.
2.5 ATTRIBUTE CONTROLLER REGISTERS

The attribute controller registers are located at the same byte I/O address for writing address and data. An internal address flip-flop (AFF) controls the selection of either the attribute index or data registers. To initialize the address flip-flop (AFF), an I/O read is issued at address 3BAH or 3DAH. This presets the address flip-flop to select the index register. After the index register has been loaded by an I/O write to address 3C0H, AFF toggles and the next I/O write loads the data register. Every I/O write to address 3C0H toggles this address flip-flop. However, it does not toggle for I/O reads at address 3C0H or 3C1H. The Attribute Controller Index register is read at 3C0H, and the Attribute Controller Data register is read at address 3C1H.

Attribute Controller Index Register

Read/Write Address: 3C0H
Power-On Default: Undefined

This register is loaded with a binary index value that determines which attribute controller register will be accessed. This value is referred to as the “Index Number” of the AR register (AR0-14).

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>ENB</td>
<td>PLT</td>
<td>ATTRIBUTE ADDRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 ATTRIBUTE ADDRESS
Value = Index to the attribute controller register where data is to be written.

Bit 5 ENB PLT - Enable Video Display
0 = Video display access to the palette registers disabled. The Attribute Controller register can be accessed by the CPU
1 = Display video using the palette registers enabled (normal display operation). The palette registers (AR0-ARF) cannot be accessed by the CPU
This bit is effective only in 8-bit modes.

Bits 7-6 Reserved

Attribute Controller Data Register

Read/Write Address: R: 3C1H/W: 3COH
Power-On Default: Undefined

This register is the data port for the attribute controller register indexed by the Attribute Controller Index register.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATTRIBUTE DATA</td>
</tr>
</tbody>
</table>

Bits 7-0 ATTRIBUTE DATA
Value = Data to the attribute controller register indexed by the attribute controller address
Palette Registers (AR00-0F)

Read/Write Address: 3C1H/3C0H, Index 00H-0FH
Power-On Default: Undefined

These are 16, 6-bit registers pointed to by the index and color code. They allow a dynamic mapping between the text attribute or graphics color input and the display color on the CRT screen.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>SECONDARY</td>
<td>PRIMAR Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>SG</td>
<td>SB</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 5-0 PALETTE COLOR

The 6-bit display color, bits 5-0 are output as SR, SG/I, SB/V, R, G and B respectively.

Bits 7-6 Reserved = 0

Attribute Mode Control Register (AR10)

Read/Write Address: 3C1H/3C0H, Index 10H
Power-On Default: 00H

The contents of this register control the attribute mode of the display function.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEL</td>
<td>256</td>
<td>TOP</td>
<td>PAN</td>
<td>= 0</td>
<td>ENB</td>
<td>ENB</td>
<td>MON</td>
</tr>
<tr>
<td>V54</td>
<td>CLR</td>
<td>BLNK</td>
<td>LGC</td>
<td>= 0</td>
<td>ATB</td>
<td>GR</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 TX/GR - Select Graphics Mode

0 = Selects text attribute control mode
1 = Selects graphics control mode

This bit must be programmed during screen off (SR1_5 = 1) or during the vertical retrace period. Setting SR1_5 to 1 may take up to 3 HSYNCs to take effect.

Bit 1 MON ATB - Select Monochrome Attributes

0 = Selects color display text attributes
1 = Selects monochrome display text attributes

Bit 2 ENB LGC - Enable Line Graphics

0 = The ninth dot of a text character (bit 0 of SR1 = 0) is the same as the background
1 = Special line graphics character codes enabled

When this bit is set to 1, it forces the ninth dot of a line graphics character to be identical to the eighth dot of the character. The line graphics character codes are C0H through DFH. For other characters, the ninth dot is the same as the background.

Bit 3 ENB BLNK - Enable Blinking

0 = Selects the background intensity for the text attribute input
1 = Selects blink attribute in text modes

This bit must also be set to 1 for blinking graphics modes. The blinking counter is operated by the vertical retrace counter (VRTC) input. It divides the VRTC input by 32. The blinking rates are ON for 16 VRTC clocks and OFF for 16 VRTC clocks. In the graphics mode, when blink is activated, the most significant color bit (bit 3) for each dot is inverted alternately, thus allowing two different colors to be displayed for 16 VRTC clocks each.

When the cursor is displayed in the text mode, it is blinked at a rate of ON for 8 VRTC clocks and OFF for 8 VRTC clocks (period by 16 frames). The displayed characters are independently blinked at the rate of 32 frames as above.

Bit 4 Reserved = 0
Bit 5 TOP PAN - Top Panning Enable
0 = Line compare has no effect on the output of the pixel panning register
1 = Forces the output of the pixel panning register to 0 after matching line compare until VSYNC occurs in the CRT controller. At the top of screen the output of the Pixel Panning register returns to its programmed value. This bit allows a top portion of a split screen to be panned.

Bit 6 256 CLR - Select 256 Color Mode
0 = 4 bits of video (translated to 6 bits by the palette) are output every internal dot-clock cycle
1 = Two 4-bit sets of video data are assembled to generate 8-bit video data at half the frequency of the internal dot-clock

Bit 7 SEL V54 - Select V[5:4]
0 = In VGA, mode, bits 5-4 of video output are generated by the attribute palette registers. Bits 7-6 of video output are always generated by bits 3-2 of AR14
1 = Bits 5-4 of video output are generated by bits 1-0 of AR14

Border Color Register (AR11)
Read/Write Address: 3C1H/3C0H, Index 11H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BORDER COLOR

Bits 7-0 BORDER COLOR
Value = Border color displayed on the CRT screen.
The border is an area around the screen display area. This register is only effective in 8-bit modes. See also CR33_5.

Color Plane Enable Register (AR12)
Read/Write Address: 3C1H/3C0H, Index 12H
Power-On Default: 00H

This register enables the respective video memory color plane 3-0 and selects video color outputs to be read back in the display status.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VDT-SEL</td>
</tr>
</tbody>
</table>

DISPLAY PLANE ENBL

Bits 3-0 DISPLAY PLANE ENBL
A 0 in any of these bits forces the corresponding color plane bit to 0 before accessing the internal palette. A 1 in any of these bits enables the data on the corresponding color plane.
Bits 5-4 VDT-SEL - Video Test Select

These bits select two of the eight bit color outputs to be available in the Input Status 1 register. The output color combinations available on the status bits are as follows:

<table>
<thead>
<tr>
<th>D STS MUX</th>
<th>STS 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 5</td>
<td>Bit 4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bits 7-6 Reserved = 0

Horizontal Pixel Panning Register (AR13)

Read/Write Address: 3C1H/3C0H, Index 13H
Power-On Default: 00H

This register specifies the number of pixels to shift the display data horizontally to the left. Pixel panning is available in both text and graphics modes. It is not available with Enhanced mode memory mappings (CR31_3 = 1).

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>NUMBER OF PAN SHIFT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 NUMBER OF PAN SHIFT

Value = the number of pixels to shift the display data horizontally to the left

In the 9 pixels/character text mode, the output can be shifted a maximum shift of 8 pixels. In the 8 pixels/character text mode and all graphics modes, except 256 color mode, a maximum shift of 7 pixels is possible. In the 256 color mode, bit 0 of this register must be 0 resulting in only 4 panning positions per display byte.

<table>
<thead>
<tr>
<th>Bits 3-0</th>
<th>Number of pixels shifted in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 pixel/char.</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
</tr>
<tr>
<td>0001</td>
<td>2</td>
</tr>
<tr>
<td>0010</td>
<td>3</td>
</tr>
<tr>
<td>0011</td>
<td>4</td>
</tr>
<tr>
<td>0100</td>
<td>5</td>
</tr>
<tr>
<td>0101</td>
<td>6</td>
</tr>
<tr>
<td>0110</td>
<td>7</td>
</tr>
<tr>
<td>0111</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>

Bits 7-4 Reserved = 0
Pixel Padding Register (AR14)

Read/Write Address: 3C1H/3C0H, Index 14H
Power-On Default: 00H

This register specifies the high-order bits of video output when pixel padding is enabled and disabled in the 256 color mode.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PIXEL PADDING
V7 V6 V5 V4

Bits 1-0 PIXEL PADDING V5, V4

These bits are enabled with a logical 1 of bit 7 of AR10, and can be used in place of the V5 and V4 bits from the Palette registers to form the 8-bit digital color value output.

Bits 3-2 PIXEL PADDING V7, V6

In all modes except 256 color mode, these bits are the two high-order bits of the 8-bit digital color value output.

Bits 7-4 Reserved = 0
2.6 RAMDAC REGISTERS

DAC Mask Register

Read/Write Address: 3C6H
Power-On Default: Undefined

The CPU can access this register at any time.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC ADDRESS MASK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 DAC ADDRESS MASK

The contents of this register are bit-wise logically ANDed with the CLUT address input. This register is initialized to FFH by the BIOS during a video mode set.

DAC Read Index Register

Write Only Address: 3C7H
Power-On Default: Undefined

This register contains the pointer to one of 256 palette data registers and is used when reading the color palette.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC READ ADDRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 DAC READ ADDRESS

Each time the color code is written to this register, it identifies that a read sequence will occur. A read sequence consists of three successive byte reads from the RAMDAC data register at I/O address 3C9H. In 6-bit CLUT mode, the least significant 6 bits of each byte taken from the RAMDAC data register contain the corresponding color value, and the most significant 2 bits contain zeros. The order is red byte first, then green, and finally blue. The sequence of events for a read cycle is:

1. Write the color code to this register (RAMDAC Read Index) at address 3C7H.
2. The contents of the location in the color look-up table pointed to by the color code are transferred to the RAMDAC data register at address 3C9H.
3. Three bytes are read back from the RAMDAC data register.
4. The contents of this register auto-increment by one.
5. Go to step 2.

The effects of writing to the RAMDAC data register during a three-byte read cycle or reading from the RAMDAC data register during a 3-byte write cycle (i.e., interrupting the sequence) are undefined and may change the look-up table contents.
DAC Status Register

Read Only

Address: 3C7H

Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>DAC-STS</td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0

DAC-STS - RAMDAC Cycle Status

The last executing cycle was:

- 00 = Write Palette cycle
- 11 = Read Palette cycle

Reads from the RAMDAC Write Index at address 3C8H or the DAC status register at address 3C7H do not interfere with read or write cycles and may take place at any time.

Bits 7-2

Reserved = 0

DAC Write Index Register

Read/Write

Address: 3C8H

Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC WRITE ADDRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0

DAC WRITE ADDRESS

This register contains the pointer to one of 256 palette data registers and is used during a palette load. Each time the color code is written to this register, it identifies that a write sequence will occur. A write sequence consists of three successive byte writes to the DAC data register at I/O address 3C9H. In 6-bit CLUT mode, the least significant 6 bits of each byte are shifted up by 2, with two LSB 0's added. The order is red byte first, then green, and finally blue. Once the third byte has been written, the value in the data register is written to the location pointed to by the color code. The sequence of events for a write cycle is:

1. Write the color code to this register (DAC Write Index) at address 3C8H.
2. Three bytes are written to the DAC Data register at address 3C9H.
3. The contents of the DAC data register are transferred to the location in the color look-up table pointed to by the color code.
4. The DAC Write Index register auto-increments by 1.
5. Go to step 2.
RAMDAC Data Register

Read/Write Address: 3C9H
Power-On Default: Undefined

This register is a data port to read or write the contents of the location in the color look-up table pointed to by the DAC Read Index or the DAC Write Index registers.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAC READ/WRITE DATA

Bits 7-0 DAC READ/WRITE DATA

To prevent “snow flicker” on the screen, an application reading data from or writing data to the DAC Data register should ensure that the BLANK input to the RAMDAC is asserted. This can be accomplished either by restricting data transfers to retrace intervals, checking 3?AH_3) to determine when retrace is occurring, or by using the screen-off bit SR1_5.
Section 3: Extended Sequencer Register Descriptions

In the following register descriptions, R’ stands for reserved (write = 0, read = undefined.

Unlock Extended Sequencer Register (SR8)

Read/Write Address: 3C5H, Index 08H
Power-On Default: 00H

Loading xxxx0110b (e.g., 06H) unlocks accessing of all the S3 extensions (SR9 - SRFF) to the standard VGA Sequencer register set. (x = don't care).

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Extended Sequencer 9 Register (SR9)

Read/Write Address: 3C5H, Index 09H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMIO-VGA</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>LAC</td>
</tr>
</tbody>
</table>

Bit 0
LAC - Linear Addressing Control
0 = Use VGA logic for linear addressing (memory writes)
1 = Bypass VGA logic for linear addressing

Bits 6-1
Reserved

Bit 7
MMIO-VGA - Memory-mapped I/O register + VGA access only
0 = When MMIO is enabled, both programmed I/O and memory-mapped I/O register accesses are allowed
1 = When MMIO is enabled, only memory-mapped I/O register accesses plus standard VGA I/O port accesses are allowed

PCI04_0 can be used to disable all I/O accesses, including standard VGA.
Extended Sequencer D Register (SRD)

Read/Write Address: 3C5H, Index 0DH
Power-On Default: 00H

This register provides feature connector control and also provides independent control of the HSYNC and VSYNC signals, therefore supporting the VESA DPMS (Display Power Management Control) standard.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSY-CTL</td>
<td>HSY-CTL</td>
<td>R=0</td>
<td>R=0</td>
<td>R=0</td>
<td>GPS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 GPS - GPOUT Pin State
0 = GPOUT pin is driven with logic 0
1 = GPOUT pin is driven with logic 1

Bits 3-1 Reserved = 0

Bits 5-4 HSY-CTL - HSYNC Control
00 = Normal operation
01 = HSYNC = 0
10 = HSYNC = 1
11 = Reserved

Bits 7-6 VSY-CTL - VSYNC Control
00 = Normal operation
01 = VSYNC = 0
10 = VSYNC = 1
11 = Reserved

MCLK Value Low Register (SR10)

Read/Write Address: 3C5H, Index 10H
Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR11 generate an MCLK value of 45 MHz. All other MCLK values must be specified by programming of SR10 and SR11. Loading of a new value is enabled by either bit 0 or bit 5 of SR15. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>PLL R VALUE</td>
<td>PLL N-DIVIDER VALUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 PLL N-DIVIDER VALUE
These bits contain the binary equivalent of the integer (1-31) divider used to scale the input to the MCLK PLL.

Bits 6-5 PLL R VALUE
These bits contain the binary equivalent of the integer (1, 2, 4, 8) range value used to scale the output of the MCLK PLL.

Bit 7 Reserved
Extended Sequencer Registers

MCLK Value High Register (SR11)

Read/Write Address: 3C5H, Index 11H
Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR10 generate an MCLK value of 45 MHz. All other MCLK values must be specified by programming of SR10 and SR11. Loading of a new value is enabled by either bit 0 or bit 5 of SR15. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>PLL M-DIVIDER VALUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 6-0 PLL M-DIVIDER VALUE
These bits contain the binary equivalent of the integer (1-127) divider used in the feedback loop of the MCLK PLL.

Bit 7 Reserved

DCLK Value Low Register (SR12)

Read/Write Address: 3C5H, Index 12H
Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR13 generate a DCLK value of 25.175 MHz. The default value is automatically placed in this register when bits 3-2 of 3C2H are programmed to 00b. If bits 3-2 of CR2H are programmed to 01b, the appropriate PLL R and PLL N values for a 28.322 MHz DCLK will automatically be placed in this register. All other DCLK values must be specified by programming of SR12, SR13 and SR29 unless SR39_0 = 1. Loading of a new value is enabled by either bit 1 or bit 5 of SR15 and by setting bits 3-2 of 3C2H to 11b. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL R VALUE</td>
<td>PLL N-DIVIDER VALUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 5-0 PLL N-DIVIDER VALUE
7-bit Value = the binary equivalent of the integer (1-127) divider used to scale the input to the DCLK PLL. Bit 6 of this value is SR29_4.

Bits 7-6 PLL R VALUE
000 = frequency divider of 1
001 = frequency divider of 2
010 = frequency divider of 4
011 = frequency divider of 8
100 = frequency divider of 16

The high order bit of this value is SR29_2.
DCLK Value High Register (SR13)

Read/Write Address: 3C5H, Index 13H
Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR12 generate a DCLK value of 25.175 MHz. The default value is automatically placed in this register when bits 3-2 of 3C2H are programmed to 00b. If bits 3-2 of CR2H are programmed to 01b, the appropriate PLL M value for a 28.322 MHz DCLK will automatically be placed in this register. All other DCLK values must be specified by programming of SR12, SR13 and SR29 unless SR39_0 = 1. Loading of a new value is enabled by either bit 1 or bit 5 of SR15 and by setting bits 3-2 of 3C2H to 11b. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>Bits</th>
<th>PLL M-DIVIDER VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 PLL M-DIVIDER VALUE

9-bit Value = the binary coding of the integer (1-511) divider used in the feedback loop of the TV clock PLL. Bit 8 of this value is SR29_3.

CLKSYN Control 1 Register (SR14)

Read/Write Address: 3C5H, Index 14H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>Bits</th>
<th>EXT DCLK</th>
<th>EXT MCLK</th>
<th>PSEL</th>
<th>CLR CNT</th>
<th>C TEST</th>
<th>EN CNT</th>
<th>MPLL PD</th>
<th>DPLL PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 DPLL PD - Power down DCLK PLL
0 = DCLK PLL powered
1 = DCLK PLL powered down

This bit is used for S3 test purposes only.

Bit 1 MPLL PD - Power down MCLK PLL
0 = MCLK PLL powered
1 = MCLK PLL powered down

This bit is used for S3 test purposes only.

Bit 2 EN CNT - Enable clock synthesizer counters
0 = Clock synthesizer counters disabled
1 = Clock synthesizer counters enabled

This bit is used for S3 test purposes only.

Bit 3 C TEST - Clock Test
00 = Test DCLK
01 = Test MCLK
10 = Test AGP clock
11 = Test ECLK

The high order bit of this field is SR34_0. These bits are used for S3 test purposes only.
Extended Sequencer Registers

Bit 4 CLR CNT - Clear clock synthesizer counters
0 = No effect
1 = Clear the clock synthesizer counters

This bit is used for S3 test purposes only.

Bit 5 PSEL - Pin function select
0 = GPOUT pin functions normally
1 = GPOUT pin is tri-stated

Setting this bit to 1 allows the GPOUT pin to act as an MCLK input. This is enabled by setting bit 6 of this register to 1.

Bit 6 EXT MCLK - External MCLK Select
0 = MCLK provided by internal PLL
1 = MCLK is input on GPOUT pin

This bit can also be set to 1 at reset via power-on strapping of ROMD1. An external MCLK is only used for S3 test purposes.

Bit 7 EXT DCLK - External DCLK Select
0 = DCLK provided by internal PLL
1 = DCLK is input on XIN pin

This bit can also be set to 1 at reset via power-on strapping of ROMA0. An external DCLK is only used for S3 test purposes.

CLKSYN Control 2 Register (SR15)

Read/Write Address: 3C5H, Index 15H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>DCLK\INV</td>
<td>CLKLOAD</td>
<td>DCLK/2</td>
<td>DCLKOUT</td>
<td>ACLKOUT</td>
<td>DRFQEN</td>
<td>MFRQEN</td>
</tr>
</tbody>
</table>

Bit 0 MFRQ EN - Enable new MCLK frequency load
0 = Register bit clear
1 = Load new MCLK frequency

When new MCLK PLL values are programmed, this bit can be set to 1 to load these values in the PLL. The loading may be delayed a small but variable amount of time. This bit should be cleared to 0 after loading to prevent repeated loading. Alternately, use bit 5 of this register to produce an immediate load.

Bit 1 DFRQ EN - Enable new DCLK frequency load
0 = Register bit clear
1 = Load new DCLK frequency

When new DCLK PLL values are programmed, this bit can be set to 1 to load these values in the PLL. Bits 3-2 of 3C2H must also be set to 11b if they are not already at this value. The loading may be delayed a small but variable amount of time. This bit should be programmed to 1 at power-up to allow loading of the VGA DCLK value and then left at this setting. Use bit 5 of this register to produce an immediate load.

Bit 2 ACLK OUT - Output internally generated AGPCLK
0 = Normal operation
1 = ROMD4 pin outputs the internally generated AGPCLK, ROMD5 pin outputs the AGP 2X clock, and ROMD6 outputs the AGP 4X clock.

This is used only for S3 testing.
Bit 3 DCLK OUT - Output internally generated DCLK or ECLK
0 = LCLK pin functions normally
1 = LCLK pin outputs the internally generated DCLK (SR34_1 = 0) or ECLK (SR34_1 = 1)

This is used only for S3 testing.

Bit 4 DCLK/2 - Divide DCLK by 2
0 = DCLK unchanged
1 = Divide DCLK by 2

This bit must be set to 1 for clock doubled RAMDAC operation.

Bit 5 CLK LOAD - MCLK, DCLK, ECLK load
0 = Clock loading is controlled by bits 0 and 1 of this register
1 = Load MCLK, DCLK and ECLK PLL values immediately

To produce an immediate MCLK, DCLK and ECLK load, program this bit to 1 and then to 0. Bits 3-2 of 3C2H must also then be programmed to 11b to load the DCLK values if they are not already programmed to this value. This register must never be left set to 1.

Bit 6 DCLK INV - Invert DCLK
0 = DCLK unchanged
1 = Invert DCLK

Bit 7 Reserved

CLKSYN Test High Register (SR16)
Read Only Address: 3C5H, Index 16H
Power-On Default: 00H

This register is reserved for S3 testing of the internal clock synthesizers.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

CLKSYN Test Low Register (SR17)
Read Only Address: 3C5H, Index 17H
Power-On Default: 00H

This register is reserved for S3 testing of the internal clock synthesizers.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>
RAMDAC/CLKSYN Control Register (SR18)

Read/Write Address: 3C5H, Index 18H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLKx2</td>
<td>LUT WR</td>
<td>DAC PD</td>
<td>TST BLUE</td>
<td>TST GRN</td>
<td>TST RED</td>
<td>TST RST</td>
<td>TST EN</td>
</tr>
</tbody>
</table>

Bit 0 TST EN - Enable test counter
- 0 = RAMDAC test counter disabled
- 1 = RAMDAC test counter enabled

This bit is used for S3 test purposes only.

Bit 1 TST RST - Reset test counter
- 0 = No effect
- 1 = Reset the RAMDAC test counter

This bit is used for S3 test purposes only.

Bit 2 TST RED - Test red data
- 0 = No effect
- 1 = Place red data on internal data bus

This bit is used for S3 test purposes only.

Bit 3 TST GRN - Test green data
- 0 = No effect
- 1 = Place green data on internal data bus

This bit is used for S3 test purposes only.

Bit 4 TST BLUE - Test blue data
- 0 = No effect
- 1 = Place blue data on internal data bus

This bit is used for S3 test purposes only.

Bit 5 DAC PD - RAMDAC power-down
- 0 = RAMDAC powered
- 1 = RAMDAC powered-down

When the RAMDAC is powered down, the RAMDAC memory retains its data.

Bit 6 LUT WR - LUT write cycle control
- 0 = 2 DCLK LUT write cycle (default)
- 1 = 1 DCLK LUT write cycle

Bit 7 CLKx2 - Enable clock doubled mode
- 0 = RAMDAC clock doubled mode disabled
- 1 = RAMDAC clock doubled mode enabled

This bit must be set to 1 when any of the 2 pixels/clock modes is specified in CR67_7-4. SR15_4 must also be set to 1.
Miscellaneous DAC Control Register (SR19)

Read/Write

Address: 3C5H, Index 19H

Power-On Default: 00H

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>DLUT - Disable CLUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CLUT enabled</td>
</tr>
<tr>
<td>1</td>
<td>CLUT disabled (powered down)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>DMS - Disable Monitor Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Monitor sense circuit enabled</td>
</tr>
<tr>
<td>1</td>
<td>Monitor sense circuit disabled (powered down)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 2</th>
<th>VPD - VREF Power Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RAMDAC VREF circuitry powered</td>
</tr>
<tr>
<td>1</td>
<td>RAMDAC VREF circuitry powered down</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 5-3</th>
<th>Reserved</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>RT - RAM Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disable RAM test</td>
</tr>
<tr>
<td>1</td>
<td>Enable RAM test</td>
</tr>
</tbody>
</table>

This bit is used for S3 RAMDAC testing.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Reserved</th>
</tr>
</thead>
</table>

Extended Sequencer 1A Register (SR1A)

Read/Write

Address: 3C5H, Index 1AH

Power-On Default: 00H

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>DI - DCLK Invert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No effect</td>
</tr>
<tr>
<td>1</td>
<td>Invert DCLK for clock doubled 15/16 bits/pixel modes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>1xS - DAC Signature 1x Clock in Bypass Mode Invert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No inversion</td>
</tr>
<tr>
<td>1</td>
<td>Invert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 2</th>
<th>Reserved</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bit 3</th>
<th>2xS - DAC Signature 2x Clock in Bypass Mode Invert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No inversion</td>
</tr>
<tr>
<td>1</td>
<td>Invert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 5-4</th>
<th>Reserved</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>EIL - Enable Internal Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disable Internal latch on XIN input. This setting must be used if the XIN input is driven when both MCLK and DCLK PLLs are powered down</td>
</tr>
<tr>
<td>1</td>
<td>Enable internal latch for the same conditions as the = 0 value except that the XIN input is not being driven when it is not being used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Reserved</th>
</tr>
</thead>
</table>
Extended Sequencer Registers

Extended Sequencer 1B Register (SR1B)

Read/Write (see bits) Address: 3C5H, Index 1BH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>CC</td>
<td>EGC</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bit 2-0 Reserved
Bit 3 EGC - Enable Gamma Correction
 0 = Gamma correction disabled
 1 = Gamma correction enabled
Bit 4 CC - CLUT Configuration
 0 = CLUT configured for 18-bit color data output
 1 = CLUT configured for 24-bit color data output
Bits 6-5 Reserved
Bit 7 DCC - DCLK Control
 0 = DCLK frequency controlled by 3C2_3-2
 1 = DCLK frequency always comes from SR12, SR13 and SR29.

Extended Sequencer 1C Register (SR1C)

Read/Write Address: 3C5H, Index 1CH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>VRP</td>
<td>FBC</td>
<td>AGP 1X CLOCK SKEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 AGP 1X CLOCK SKEW
 0000 = Decrease by 4x minimum skew
 0001 = Decrease by 4x minimum skew
 0010 = Decrease by 4x minimum skew
 0011 = Decrease by 4x minimum skew
 0100 = Decrease by 3x minimum skew
 0101 = Decrease by 2x minimum skew
 0110 = Decrease by 1x minimum skew
 0111 = Decrease by 1x minimum skew
 1000 = No change
 1001 = Increase by 1x minimum skew
 1010 = Increase by 1x minimum skew
 1011 = Increase by 2x minimum skew
 1100 = Increase by 3x minimum skew
 1101 = Increase by 4x minimum skew
 1110 = Increase by 5x minimum skew
 1111 = Increase by 5x minimum skew

See CRB7_3-0 for AGP 2x clock skew control.

Bits 5-4 FBC - Feedback Clock Input Select
 00 = Standard feedback clock
 01 = Feedback clock with dummy load
 10 = Internal feedback clock
 11 = Internal feedback clock
Bit 6 VRP - AGP Voltage Regulator Powerdown
 0 = AGP voltage regulator powered up
 1 = AGP voltage regulator powered down

Bit 7 APD - AGP PLL Powerdown
 0 = AGP PLL normal operation
 1 = AGP PLL powered down

SDCLKR Delay Register (SR1D)
Read/Write Address: 3C5H, Index 1DH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

Bits 3-0 PD[31:0] DELAY
 Value = Delay of SDCLKR input for PD[31:0]
 Each increment from 0 to 15 increases the return clock signal delay by between 0.15 and 0.4 ns. 0H generates no delay; FH generates 15 units delay.

Bits 7-4 PD[63:32] DELAY
 Value = Delay of SDCLKR input for PD[63:32]
 Each increment from 0 to 15 increases the return clock signal delay by between 0.15 and 0.4 ns. 0H generates no delay; FH generates 15 units delay.

DAC Current Control Register (SR27)
Read/Write Address: 3C5H, Index 27H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>BPE</td>
<td>RAMDAC ADJUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 RAMDAC ADJUST
 These bits are used to adjust the gain of the RAMDAC.

Bit 3 BPE - BLANK Pedestal Enable
 0 = Disable BLANK pedestal
 1 = Enable BLANK pedestal

Bits 7-4 Reserved
PLL IREF Control Register (SR28)
Read/Write Address: 3C5H, Index 28H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGP VCO</td>
<td>AGP IREF</td>
<td>DCLK IREF</td>
<td>MCLK IREF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 MCLK IREF
These bits adjust the IREF current of the MCLK PLL.

Bits 3-2 DCLK IREF
These bits adjust the IREF current of the DCLK PLL.

Bits 5-4 AGP CLOCK IREF
These bits adjust the IREF current of the AGP clock PLL.

Bits 7-6 AGP CLOCK VCO
These bits adjust the VCO gain of the AGP clock PLL.

DCLK PLL Value Overflow Register (SR29)
Read/Write Address: 3C5H, Index 29H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>DN6</td>
<td>DM8</td>
<td>DR2</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bits 1-0 Reserved
Bit 2 DR2 - DCLK PLL R Value Bit 2
See the description for SR12.

Bit 3 DM8 - DCLK PLL M Value Bit 8
See the description for SR13.

Bit 4 DN6 - DCLK PLL N Value Bit 6
See the description for SR13.

Bits 7-5 Reserved

Extended Sequencer 30 Register (SR30)
Read/Write unless noted Address: 3C5H, Index 30H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>PL</td>
<td>R</td>
<td>PD</td>
<td>PDC</td>
<td>FT</td>
</tr>
</tbody>
</table>

Bit 0 FT - Flat Panel Logic for TV
0 = Normal operation
1 = TV output uses flat panel centering and expansion logic
Bit 1 **PDC - Panel Detect Control**
0 = Pin N5 is an input
1 = Pin N5 is an output

This bit must be cleared to 0 for panel detection. See bit 2 of this register.

Bit 2 **PD - Panel Detect (Read only)**
0 = Flat panel not connected
1 = Flat panel connected

Bit 1 of this register must be cleared to 0 and the appropriate hardware connections made for this bit to be effective.

Bit 3 **Reserved**

Bit 4 **PL - PanelLink Interface**
0 = 24-bit single clocked data
1 = 12-bit double clocked data

Bits 7-5 **Reserved**

Extended Sequencer 31 Register (SR31)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | **STO - Serial ROM, Flat Panel/Digital TV Output** | 0 = Serial ROM pin definition for the multiplexed ROM/flat panel/digital TV pins
1 = Flat panel/digital TV pin definition for the multiplexed ROM/flat panel/TV pins |
| | **In addition, bit 4 of this register must be set to 1 and CRB0_3 must be 0 for flat panel operation. CRB0_4 must be 0 for TV operation. CRB0_2 must be 0 for serial ROM operation.** |
| | **Bits 2-1** **ECLK IREF** | These bits adjust the IREF current of the ECLK PLL. |
| 3 | **EFE - Enable new ECLK frequency load** | 0 = Register bit clear
1 = Load new ECLK frequency

When new ECLK PLL values are programmed, this bit can be set to 1 to load these values in the PLL. The loading may be delayed a small but variable amount of time. This bit should be cleared to 0 after loading to prevent repeated loading. Alternately, use SR15_5 to produce an immediate load.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 | **EFP - Enable Flat Panel Operation** | 0 = Flat panel operation disabled
1 = Flat panel operation enabled |
| | **Bits 5-6** **DCLK VCO** | These bits adjust the VCO gain of the DCLK PLL. |
| 7 | **TCP - TV Clock Phase** | 0 = TVCLKR is in phase with TVCLK
1 = TVCLKR is 180° out of phase with TVCLK |
Extended Sequencer Registers

ECLK Value Low Register (SR32)
Read/Write Address: 3C5H, Index 32H
Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR33 generate an ECLK value of 45 MHz. All other ECLK values must be specified by programming of SR32 and SR33. Loading of a new value is enabled by bit 5 of SR15. After programming any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>PLL R VALUE</td>
<td>PLL N-DIVIDER VALUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0 PLL N-DIVIDER VALUE

These bits contain the binary equivalent of the integer (1-31) divider used to scale the input to the ECLK PLL.

Bits 6-5 PLL R VALUE

These bits contain the binary equivalent of the integer (1, 2, 4, 8) range value used to scale the output of the ECLK PLL.

Bit 7 Reserved

ECLK Value High Register (SR33)
Read/Write Address: 3C5H, Index 33H
Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR32 generate an ECLK value of 45 MHz. All other ECLK values must be specified by programming of SR32 and SR33. Loading of a new value is enabled by bit 5 of SR15. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>PLL M-DIVIDER VALUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 6-0 PLL M-DIVIDER VALUE

These bits contain the binary equivalent of the integer (1-127) divider used in the feedback loop of the ECLK PLL.

Bit 7 Reserved

Extended Sequencer 34 Register (SR34)
Read/Write Address: 3C5H, Index 34H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>RT</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>COS</td>
<td>CTO</td>
</tr>
</tbody>
</table>

Bit 0 CTO - Clock Test Overflow

This is the high order bit of the clock test select. See SR14_3.

Bit 1 COS - Clock Output Select

0 = Output DCLK on LCLK pin if SR15_3 = 1
1 = Output ECLK on LCLK pin if SR15_3 = 1

Bits 7-2 Reserved
Digital TV Control Register (SR35)

Read/Write Address: 3C5H, Index 35H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>TOM</td>
<td>TVM</td>
<td>TVCLK DELAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 TVCLK DELAY

Value = Delay in ns of the TVCLK input from an external encoder

Bits 5-4 TVM - TV Encoder Mode

00 = Bt868/869 mode
11 = Reserved

Bit 6 TOM - TV Output Mode (Streams Processor Off)

0 = TV output mode is other than 8 bpp
1 = TV output mode is 8 bpp

This bit is only effective when the Streams Processor is turned off.

Bit 7 ODS - TV Output Data Switch

0 = TV output data is ordered as specified in bits 5-4 of this register
1 = Data ordering specified in bits 5-4 of this register is reversed

For example, if bits 5-4 = 01b and this bit is set to 1, then the output is G[4:0]R[7:0] on rising edge; B[7:0]G[7:4] on falling edge.

VGA DCLK Value Low Register (SR36) (Rev. B)

Read/Write Address: 3C5H, Index 36H
Power-On Default: 00H

This register is used instead of SR12 when SR39_0 = 1. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL R VALUE</td>
<td>PLL N-DIVIDER VALUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 5-0 PLL N-DIVIDER VALUE

7-bit Value = the binary equivalent of the integer (1-127) divider used to scale the input to the DCLK PLL. Bit 6 of this value is SR39_4.

Bits 7-6 PLL R VALUE

000 = frequency divider of 1
001 = frequency divider of 2
010 = frequency divider of 4
011 = frequency divider of 8
100 = frequency divider of 16

The high order bit of this value is SR39_2.
VGA DCLK Value High 1 Register (SR37) (Rev. B)

Read/Write Address: 3C5H, Index 37H
Power-On Default: 00H

This register is used instead of SR13 when SR39_0 = 1 and 3C2_3-2 = 00b. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLL M-DIVIDER VALUE</td>
</tr>
</tbody>
</table>

Bits 7-0 PLL M-DIVIDER VALUE

9-bit Value = the binary coding of the integer (1-511) divider used in the feedback loop of the DCLK PLL. Bit 8 of this value is SR39_3.

VGA DCLK Value High 2 Register (SR38) (Rev. B)

Read/Write Address: 3C5H, Index 38H
Power-On Default: 00H

This register is used instead of SR13 when SR39_0 = 1 and 3C2_3-2 = 01b. After loading any PLL value, software must delay at least 1 ms before taking further action.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLL M-DIVIDER VALUE</td>
</tr>
</tbody>
</table>

Bits 7-0 PLL M-DIVIDER VALUE

9-bit Value = the binary coding of the integer (1-511) divider used in the feedback loop of the DCLK PLL. Bit 8 of this value is SR39_3.
Extended Sequencer 39 Register (SR39) (Rev. B)

Read/Write Address: 3C5H, Index 39H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VDS – VGA DCLK Select</td>
<td>0 = Use default values for SR12 and SR13 for VGA DCLK PLL programming 1 = Use SR36 and SR37 for the VGA DCLK PLL values if 3C2_3-2 = 00b or SR36 and SR38 for the VGA DCLK PLL values if 3C2_3-2 = 01b.</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DR2 - DCLK PLL R Value Bit 2</td>
<td>See the description for SR36.</td>
</tr>
<tr>
<td>3</td>
<td>DM8 - DCLK PLL M Value Bit 8</td>
<td>See the description for SR37 and SR38.</td>
</tr>
<tr>
<td>4</td>
<td>DN6 - DCLK PLL N Value Bit 6</td>
<td>See the description for SR37 and SR38.</td>
</tr>
<tr>
<td>5</td>
<td>PCE – Pad Compensation Overwrite Enable</td>
<td>0 = Use automatic feedback code for the pad compensation 1 = Use CRB6 value for pad compensation</td>
</tr>
<tr>
<td>6</td>
<td>CCG – New Compensation Code Generation</td>
<td>0 = Keep the previous/default pad compensation code (1.5V) 1 = Generate a new feedback code for pad compensation (1.5V)</td>
</tr>
<tr>
<td>7</td>
<td>CSP – Compensation Sensor Powerdown</td>
<td>0 = Disable the 1.5V process compensation sensor 1 = Enable the 1.5V process compensation sensor</td>
</tr>
</tbody>
</table>
Section 4: Flat Panel Registers

Flat Panel Output Control Register (SR3D)

Read/Write Address: 3C5H, Index 3DH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD</td>
<td>PDD</td>
<td>R</td>
<td>R</td>
<td>CLK DELAY</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 Reserved
Bits 3-2 CLK DELAY - PANELCLK Output Delay (Rev. B)
00 = No delay.
01 = Delayed approximately 100 ps
10 = Delayed approximately 200 ps
11 = Delayed approximately 300 ps
Bit 4 HWC – Hardware Cursor Fix (Rev. C)
0 = Normal Rev. B operation
1 = Hardware cursor will appear in last five columns of flat panel display

This bit should be set to 1 for flat panel display with the Streams Processor enabled and the primary stream in 15/16 or 32 bpp mode.

Bit 5 Reserved
Bit 6 PDD - PANELD[23:0] Drive Strength
0 = 4 mA (8 mA for Rev. B)
1 = 8 mA (16 mA for Rev. B)
Bit 7 PCD - PANELCLK Drive Strength
0 = 8 mA
1 = 16 mA

Flat Panel Horizontal Compensation 1 Register (SR54)

Read/Write Address: 3C5H, Index 54H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>HCE</td>
<td>GRAPH EXP</td>
<td>TEXT EXP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 TEXT EXP - Text Mode Horizontal Expansion
00 = Horizontal expansion disabled
01 = Horizontal expansion enabled up to a maximum expansion factor of 1.25
10 = Reserved
11 = Horizontal expansion enabled up to the horizontal panel size. For VGA panels, 9-dot text modes will be forced to 8-dot text modes.

The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting can be used for panels larger than 800 columns to limit the expansion and eliminate the undesirable visual effects.
Bits 3-2 GRAPH EX - Graphics Mode Horizontal Expansion
00 = Horizontal expansion disabled
01 = Horizontal expansion enabled up to a maximum expansion factor of 1.25
10 = Reserved
11 = Horizontal expansion enabled up to the horizontal panel size. For VGA panels, 9-dot text modes will be forced to
8-dot text modes.

The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting
can be used for panels larger than 800 columns to limit the expansion and eliminate the undesirable visual effects.

Bit 4 HCE - Horizontal Centering Enable
0 = Horizontal centering disabled
1 = Horizontal centering enabled

Bits 7-5 Reserved

Flat Panel Horizontal Compensation 2 Register (SR55)
Read/Write Address: 3C5H, Index 55H
Power-On Default: 00H

The bits in this register control enabling of horizontal expansion in specific text/graphics modes. They are effective only if text mode
horizontal expansion is enabled via SR54_1-0. Horizontal expansion for all other modes not controlled by these bits is controlled by
SR54_3-0.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40C - 40-character Text Mode Horizontal Expansion Enable</td>
</tr>
<tr>
<td>1</td>
<td>80C - 80-character Text Mode Horizontal Expansion Enable</td>
</tr>
<tr>
<td>2</td>
<td>640C - 320/640-column Graphics Mode Horizontal Expansion Enable</td>
</tr>
<tr>
<td>3</td>
<td>800C - 800-column Graphics Mode Horizontal Expansion Enable</td>
</tr>
<tr>
<td>4</td>
<td>1024C - 1024-column Graphics Mode Horizontal Expansion Enable</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

This bit affects text mode expansion for 800-column or 1024-column panels.
Flat Panel Vertical Compensation 1 Register (SR56)

Read/Write Address: 3C5H, Index 56H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>VCE</td>
<td>GRAPH EXP</td>
<td>TEXT EXP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 TEXT EXP - Text Mode Vertical Expansion
- 00 = Vertical expansion disabled
- 01 = Vertical expansion enabled up to a maximum of 480 lines
- 10 = Reserved
- 11 = Vertical expansion enabled up to the vertical panel size

The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting can be used for panels larger than 480 lines to limit the expansion and eliminate the undesirable visual effects.

Bits 3-2 GRAPH EXP - Graphics Mode Vertical Expansion
- 00 = Vertical expansion disabled
- 01 = Vertical expansion enabled up to a maximum of 480 lines
- 10 = Reserved
- 11 = Vertical expansion enabled up to the vertical panel size.

The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting can be used for panels larger than 480 lines to limit the expansion and eliminate the undesirable visual effects.

Bit 4 VCE - Vertical Centering Enable
- 0 = Vertical centering disabled
- 1 = Vertical centering enabled

This bit is effective only if vertical expansion is enabled via bits 3-2 of this register.

Bits 7-5 Reserved

Flat Panel Vertical Compensation 2 Register (SR57)

Read/Write Address: 3C5H, Index 57H
Power-On Default: 00H

This register is used only when flat panel operation is enabled (SR31_4 = 1). The bits in this register control enabling of vertical expansion in specific text/graphics modes. Vertical expansion for all other modes not controlled by these bits is controlled by SR56_3-0.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATVE</td>
<td>768G</td>
<td>600G</td>
<td>480G</td>
<td>200G</td>
<td>350G</td>
<td>200T</td>
<td>350T</td>
</tr>
</tbody>
</table>

Bit 0 350T - 350-line Text Mode Vertical Expansion Enable
- 0 = Vertical expansion disabled in 350-line text mode
- 1 = Vertical expansion enabled in 350-line text mode

This bit is effective only if text mode vertical expansion is enabled via SR56_0 = 1 or SR56_1 = 1.

Bit 1 200T - 200/400-line Text Mode Vertical Expansion Enable
- 0 = Vertical expansion disabled in 200/400-line text mode
- 1 = Vertical expansion enabled in 200/400-line text mode

This bit is effective only if text mode vertical expansion is enabled via SR56_0 = 1 or SR56_1 = 1.
Bit 2 350G - 350-line Graphics Mode Vertical Expansion Enable
0 = Vertical expansion disabled in 350-line graphics mode
1 = Vertical expansion enabled in 350-line graphics mode

This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.

Bit 3 200G - 200/400-line Graphics Mode Vertical Expansion Enable
0 = Vertical expansion disabled in 200/400-line graphics mode
1 = Vertical expansion enabled in 200/400-line graphics mode

This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.

Bit 4 480G - 480-line Graphics Mode Vertical Expansion Enable
0 = Vertical expansion disabled in 480-line graphics mode
1 = Vertical expansion enabled in 480-line graphics mode

This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.

Bit 5 600G - 600-line Graphics Mode Vertical Expansion Enable
0 = Vertical expansion disabled in 600-line graphics mode
1 = Vertical expansion enabled in 600-line graphics mode

This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.

Bit 6 768G - 768-line Graphics Mode Vertical Expansion Enable
0 = Vertical expansion disabled in 768-line graphics mode
1 = Vertical expansion enabled in 768-line graphics mode

This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.

Bit 7 ATVE - Alternate Text Mode Vertical Expansion
0 = Standard text mode vertical expansion
1 = Alternate text mode vertical expansion

This bit affects text mode expansion for 200/400-line text modes for 600-line or 768-line panels.

Flat Panel Horizontal Border Register (SR58)

Read Only
Address: 3C5H, Index 58H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FP HORIZONTAL BORDER 7-0</td>
</tr>
</tbody>
</table>

Bits 7-0
FP HORIZONTAL BORDER 7-0

9-bit Value = (number of character clocks per line from the first pixel column on the flat panel to last pixel column before the start of the video image) + (number of character clocks per line from the first pixel column after the end of the video image to the last pixel column on the flat panel)

Bit 8 of this value is in SR59_0. This value is valid only when horizontal centering is enabled (SR54_4 = 1).
Flat Panel Horizontal Expansion Factor Register (SR59)

Read Only
Address: 3C5H, Index 59H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>HORIZ EXP FACTOR</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>HB8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0
HB8 - Flat Panel Horizontal Border Bit 8

Bits 7-0 are in SR58.

Bits 3-1
Reserved

Bits 6-4
HORIZ EXP FACTOR
- 000 = panel size < image size
- 001 = 1 1/8x image size > panel size ≥ image size
- 010 = illegal
- 011 = 1 1/4x image size > panel size ≥ 1 1/8x image size
- 100 = 1 1/2x image size > panel size ≥ 1 1/4x image size
- 101 = illegal
- 110 = 2x image size > panel size ≥ 1 1/2x image size
- 111 = panel size ≥ 2x image size

Bit 7
Reserved

Flat Panel Vertical Border Register (SR5A)

Read Only
Address: 3C5H, Index 5AH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FP VERTICAL BORDER 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FP VERTICAL BORDER 7-0

9-bit Value = number of scan lines per frame from the first (top) scan line on the flat panel to the last scan line before the start of the video image

Bit 8 of this value is SR5B_0. This value is valid only when vertical centering is enabled (SR56_4 = 1)

Flat Panel Vertical Expansion Factor Register (SR5B)

Read/Write unless noted
Address: 3C5H, Index 5BH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERT EXP FACTOR</td>
<td>LRI</td>
<td>VCD</td>
<td>VED</td>
<td>VB8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0
VB8 - Flat Panel Vertical Border Bit 8

Bits 7-0 are in SR5A.

Bit 1
VED - Vertical Expansion Detect (Read Only)
- 0 = No vertical expansion
- 1 = Automatic vertical expansion is being done or would be being done if enabled.

This bit is used only for test purposes.
Bit 2 VCD - Vertical Centering Detect (Read Only)
0 = No vertical centering
1 = Automatic vertical centering is being done (it must be enabled)

This bit is used only for test purposes.

Bit 3 LRI - Line Repeat Indicator (Read Only)
0 = Current scan line will be repeated on the next scan line
1 = Current scan line will not be repeated on the next scan line

This bit is used only for test purposes.

Bits 7-4 VERT EXP FACTOR (Read Only)
0000 = No expansion (image equal to or larger than panel size)
0001 = No expansion (centered if enabled)
0010 = Expand 16-line text to 19-line text
0011 = Double every fifth line
0100 = Double every fourth line
0101 = Double every third line
0110 = Expand 14-line text to 19-line text
0111 = Double every second line
1000 = Double every line
1001 = Double one line and triple the second, repeat
1010 = Double, double, triple, double, triple, repeat
1011 = Double, triple, triple, repeat
1100 = Double, double, triple, triple, repeat
1101 = Expand 8-line text to 19-line text (when CR9_7 = 1)
1110 = Triple every line
1111 = Quadruple every line

Flat Panel Display Enable Position Control Register (SR5C)

Read/Write Address: 3C5H, Index 5CH
Power-On Default: Undefined

This register is effective only for Enhanced modes (8 bits/pixel or higher). The BIOS should program this register to 07H on reset.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>FPDEC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 FPDEC - Flat Panel Display Enable

Value = starting position of the horizontal and vertical display enables

This field should normally be left at 0111b. A smaller value causes the display enables to be moved earlier by the difference between the programmed value and the nominal value. A larger value causes the display enables to be moved later by the difference between the programmed value and the nominal value. Each difference unit causes a shift of 1 DCLK.

Bits 7-4 Reserved
Flat Panel/CRT Sync Position Control Register (SR5D)

Read/Write Address: 3C5H, Index 5DH
Power-On Default: Undefined

This register is effective only for Enhanced modes (8 bits/pixel or higher). The BIOS should program this register to 07H on reset.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>FP/CRTSC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 FP/CRTSC - Flat Panel/CRT Sync

Value = starting position of the horizontal and vertical syncs

This field should normally be left at 0111b. A smaller value causes the syncs to be moved earlier by the difference between the programmed value and the nominal value. A larger value causes the syncs to be moved later by the difference between the programmed value and the nominal value. Each difference unit causes a shift of 1 DCLK.

Bits 7-4 Reserved

Flat Panel BIOS Scratch 1 Register (SR5E)

Read/Write Address: 3C5H, Index 5EH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>RESERVED FOR BIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 RESERVED FOR BIOS

Flat Panel BIOS Scratch 2 Register (SR5F)

Read/Write Address: 3C5H, Index 5FH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>RESERVED FOR BIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 RESERVED FOR BIOS

Flat Panel Horizontal Total Register (SR60)

Read/Write Address: 3C5H, Index 60H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>FP HORIZONTAL TOTAL 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 FP HORIZONTAL TOTAL 7-0

11-bit Value = \([\text{number of character clocks in one scan line}] - 5\)

A character clock is always 8 FPSCLKs (FP dot clocks). The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_0. Bits 10-9 are SR67_1-0.
Flat Panel Horizontal Panel Size Register (SR61)

Read/Write Address: 3C5H, Index 61H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP HORIZONTAL PANEL SIZE 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FP HORIZONTAL PANEL SIZE 7-0
11-bit Value = [horizontal panel resolution in character clocks] - 1
A character clock is always 8 FPSCLKs (FP dot clocks). For example, for a VGA panel with a horizontal resolution of 640, the programmed value would be the binary equivalent of \([640/8] - 1\). The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_1. Bits 10-9 are SR67_3-2.

Flat Panel Horizontal Blank Start Register (SR62)

Read/Write Address: 3C5H, Index 62H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP HORIZONTAL BLANK START 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FP HORIZONTAL BLANK START 7-0
11-bit Value = character clock counter value at which blanking begins
A character clock is always 8 FPSCLKs (FP dot clocks). The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_2. Bits 10-9 are SR67_5-4.

Flat Panel Horizontal Blank End Register (SR63)

Read/Write Address: 3C5H, Index 63H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP HORIZONTAL BLANK END 4-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-0
FP HORIZONTAL BLANK END 4-0
6-bit Value = least significant 6 bits of the character clock counter value at which blanking ends
A character clock is always 8 FPSCLKs (FP dot clocks). To obtain this value, add the desired width of the vertical blanking pulse in character clocks to the value in the FP Horizontal Blank Start register, also in character clocks. The 5 least significant bits of this value are programmed into this field. The programmed value is independent of horizontal compensation and applies to all modes. Bit 5 of this value is SR65_7. If the horizontal blank period is more than 64 character clocks, then SR66_3 must be set to 1.

Bits 7-5
Reserved
Flat Panel Horizontal Sync Start Register (SR64)

Read/Write Address: 3C5H, Index 64H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FP HORIZONTAL SYNC START 7-0</td>
</tr>
</tbody>
</table>

Bits 7-0 FP HORIZONTAL SYNC START 7-0

11-bit Value = character clock counter value at which the horizontal sync pulse (LP) becomes active

A character clock is always 8 FPSCLKs (FP dot clocks). The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_4. Bits 10-9 are SR67_7-6.

Flat Panel Horizontal Sync End Register (SR65)

Read/Write Address: 3C5H, Index 65H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FP HORIZONTAL SYNC END 4-0</td>
</tr>
</tbody>
</table>

Bits 4-0 FP HORIZONTAL SYNC END 4-0

5-bit Value = least significant 5 bits of the character clock counter value at which the horizontal sync pulse (LP) becomes inactive

A character clock is always 8 FPSCLKs (FP dot clocks). To obtain this value, add the desired width of the horizontal sync pulse in character clocks to the value in the FP Horizontal Sync Start register. The 5 least significant bits of this value are programmed into this field. The programmed value is independent of horizontal compensation and applies to all modes. If the horizontal sync period is more than 32 character clocks, SR66_5 must be set to 1.

Bits 6-5 Reserved
Bit 7 BE5 - FP Horizontal Sync End Bit 5

Bits 4-0 are in this register.

Flat Panel Horizontal Overflow Register (SR66)

Read/Write Address: 3C5H, Index 66H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FP HORIZONTAL OVERFLOW</td>
</tr>
</tbody>
</table>

Bit 0 FP Horizontal Total Bit 8

Bits 7-0 are in SR60.

Bit 1 FP Horizontal Panel Size Bit 8

Bits 7-0 are in SR61.

Bit 2 FP Horizontal Blank Start Bit 8

Bits 7-0 are in SR62.
Flat Panel Registers

Bit 3
FP Horizontal Blank Period
0 = Flat panel horizontal blank period is 64 character clocks or less
1 = Flat panel horizontal blank period is greater than 64 character clocks

See SR 63_.4-0.

Bit 4
FP Horizontal Sync Start Bit 8

Bits 7-0 are in SR64.

Bit 5
FP Horizontal Sync Period
0 = Flat panel horizontal sync period is 32 character clocks or less
1 = Flat panel horizontal sync period is greater than 32 character clocks

See SR65_.4-0.

Bits 7-6
Reserved

Flat Panel Horizontal Overflow 2 Register (SR67)

Read/Write: Address: 3C5H, Index 67H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPHT10=9</td>
<td>FPHPS10-9</td>
<td>FPHBS10-9</td>
<td>FPHSS10-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0
FP Horizontal Total Bits 10-9

Bits 7-0 are in SR60. Bit 8 is SR66_.0.

Bits 3-2
FP Horizontal Panel Size Bits 10-9

Bits 7-0 are in SR61. Bit 8 is SR66_.1.

Bits 5-4
FP Horizontal Blank Start Bits 10-9

Bits 7-0 are in SR62. Bit 8 is SR66_.2.

Bits 7-6
FP Horizontal Sync Start Bits 10-9

Bits 7-0 are in SR64. Bit 8 is SR66_.4.

Flat Panel Vertical Total Register (SR68)

Read/Write: Address: 3C5H, Index 68H
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP VERTICAL TOTAL 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FP VERTICAL TOTAL 7-0

11-bit Value = \text{[number of scan lines from one vertical sync pulse (FLM) active to the next vertical sync pulse active] - 2}

The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6E_.2-0.
Flat Panel Vertical Panel Size Register (SR69)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 3C5H, Index 69H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-On Default: Undefined</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP VERTICAL PANEL SIZE 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FP VERTICAL PANEL SIZE 7-0

11-bit Value = [vertical panel resolution in scan lines] - 1

For example, for a VGA panel with a vertical resolution of 480, the programmed value would be the binary equivalent of 480 - 1. The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6E_6-4.

Flat Panel Vertical Blank Start Register (SR6A)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 3C5H, Index 6AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-On Default: Undefined</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP VERTICAL BLANK START 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FP VERTICAL BLANK START 7-0

11-bit Value = scan line counter value at which blanking begins

The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6F_2-0.

Flat Panel Vertical Blank End Register (SR6B)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 3C5H, Index 6BH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-On Default: Undefined</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP VERTICAL BLANK END 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FP VERTICAL BLANK END 7-0

Value = least significant 8 bits of the scan line counter value at which blanking ends

To obtain this value, add the desired width of the vertical blanking pulse in scan lines to the value in the FP Vertical Blank Start register, also in scan lines. The 8 least significant bits of this value are programmed into this field. The programmed value is independent of vertical compensation and applies to all modes.
Flat Panel Vertical Sync Start Register (SR6C)

Read/Write Address: 3C5H, Index 6CH
Power-On Default: Undefined

Bits 7-0 FP VERTICAL SYNC START 7-0

11-bit Value = [scan line counter value at which the vertical sync pulse (FLM) becomes active] - 1

The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6F_6-4.

Flat Panel Vertical Sync End Register (SR6D)

Read/Write Address: 3C5H, Index 6DH
Power-On Default: Undefined

Bits 3-0 FP VERTICAL SYNC END 3-0

4-bit Value = least significant 4 bits of the character clock counter value at which the vertical sync pulse (FLM) becomes inactive

To obtain this value, add the desired width of the vertical sync pulse in scan lines to the value in the FP Vertical Sync Start register, also in scan lines. The 4 least significant bits of this value are programmed into this field. The programmed value is independent of vertical compensation and applies to all modes.

Bits 7-4 Reserved

Flat Panel Vertical Overflow 1 Register (SR6E)

Read/Write Address: 3C5H, Index 6EH
Power-On Default: Undefined

Bits 2-0 VT10-8 - FP Vertical Total Bits 10-8

Bits 7-0 are in SR68.

Bit 3 Reserved

Bits 6-4 VPS10-8 - FP Vertical Panel Size Bits 10-8

Bits 7-0 are in SR69.

Bit 7 Reserved
Flat Panel Vertical Overflow 2 Register (SR6F)

Read/Write Address: 3C5H, Index 6FH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>VSS10-8</td>
<td>R</td>
<td>VBS10-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bits 2-0**: VBS10-8 - FP Vertical Blank Start Bits 10-8
 - Bits 7-0 are in SR6A.

- **Bit 3**: Reserved

- **Bits 6-4**: VSS10-8 - FP Vertical Sync Start Bits 10-8
 - Bits 7-0 are in SR6C.

- **Bit 7**: Reserved
Section 5: Extended CRTC Register Descriptions

These registers are located in CRT Controller address space at locations not used by the VGA standard. All registers are read/write protected at power-up by hardware reset. In order to read/write these registers, CR38 and/or CR39 must be loaded with a changed key pattern (see the register description). The registers will remain unlocked until the key pattern is reset by altering a significant bit.

In the following register descriptions, ‘R’ stands for reserved (write =0, read = undefined).

Synchronization 0 Register (CR21)

Read/Write Address: 375H, Index 23H
Power-On Default: 00H

A5H must be programmed into CR39 to access this register.

```
<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>DPL</td>
<td>R</td>
</tr>
</tbody>
</table>
```

Bit 0 Reserved
Bit 1 DPL - Delay Primary Stream Display Start Address Load
 0 = Normal operation
 1 = Delay PS display start address load by 2 character clocks
Bits 7-2 Reserved

Synchronization 1 Register (CR23)

Read/Write Address: 375H, Index 23H
Power-On Default: 00H

This register must be 00H before CR26 is written. For this to be effective, A5H must first be programmed into CR39.

```
<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>
```

Bits 7-0 Reserved
Synchronization 2 Register (CR26)

Read/Write Address: 3?5H, Index 26H
Power-On Default: 00H

The BIOS must write 00H to this register upon each mode set (assuming CR23 is at its default value of 00H). Drivers should write 00H to this register after writing 00H to CR23 before enabling Streams Processor operation. For this to be effective, A5H must first be programmed into CR39.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bits 7-0 Reserved

Device ID High Register (CR2D)

Read Only Address: 3?5H, Index 2DH
Power-On Default: 8AH

This register should contain the same value as the upper byte of the PCI Device ID (Index 02H) register.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIP ID HIGH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 CHIP ID HIGH
Value = 8AH (hardwired)

Device ID Low Register (CR2E)

Read Only Address: 3?5H, Index 2EH
Power-On Default: See Below

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIP ID LOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 CHIP ID LOW
Value = 22H (hardwired)

Revision Register (CR2F)

Read Only Address: 3?5H, Index 2FH
Power-On Default: xxH

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVISION LEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 REVISION LEVEL
Value = xx (hardwired)
The "xx" will change with each revision of the chip.
Old Chip ID Register (CR30)

Read Only Address: 375H, Index 30H
Power-On Default: E1H

Use CR2D, CR2E and CR2F for chip ID information.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 OLD ID

value = E1H (hardwired)

Memory Configuration Register (CR31)

Read/Write Address: 375H, Index 31H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 CPUA BASE - Enable Base Address Offset
0 = Address offset bits (CR6A_6-0) are disabled
1 = Address offset bits (CR6A_6-0) are enabled

Setting this bit allows access to up to 8 MBytes of display memory through a 64K window at A0000H.

Bit 1 SCRN 2.PG - Enable Two-Page Screen Image
0 = Normal Mode
1 = Enable 2K x 1K x 4 map image screen for 1024 x 768 or 800 x 600 screen resolution, or 2K x 512 x 8 map image screen for 640 x 480 screen resolution

This is useful in VGA text modes when VGA graphics controller functions are typically not used.

Bit 2 VGA 16B - Enable VGA 16-bit Memory Bus Width
0 = 8-bit memory bus operation
1 = Enable 16-bit bus VGA memory read/writes

Setting this bit to 1 overrides the settings of bit 6 of CR14 and bit 3 of CR17 and causes the use of doubleword memory addressing mode. Also, the function of bits 3-2 of GR6 is overridden with a fixed 64K map at A0000H.

Bits 5-4 Reserved

Bit 6 HST DFF - Enable High Speed Text Display Font Fetch Mode
0 = Normal font access mode
1 = Enable high speed text display

Setting this bit to 1 is only required for DCLK rates greater than 40 MHz. See bit 5 of CR3A.

Bit 7 Reserved
Backward Compatibility 1 Register (CR32)

Read/Write Address: 375H, Index 32H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>VGA FXPG</td>
<td>R</td>
<td>INT EN</td>
<td>R=0</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bits 2-0 Reserved
Bit 3 Reserved = 0

This bit should never be set to 1.
Bit 4 INT EN - Interrupt Enable
0 = All interrupt generation disabled
1 = Interrupt generation enabled
Bit 5 Reserved
Bit 6 VGA FXPG - Use Standard VGA Memory Wrapping
0 = Memory accesses extending past a 256K boundary do not wrap
1 = Memory accesses extending past a 256K boundary wrap at the boundary

The standard 256K VGA memory page always ends on a natural 256K boundary and accesses beyond this boundary will wrap. If the starting address is moved via bits 4-0 of CR69 (or bits 5-4 of CR31 and bits 1-0 of CR51), the 256K page may not end on a 256K boundary and accesses past the boundary will not wrap. This is the case when this bit is cleared to 0. For standard VGA compatibility when the page base address is moved, this bit is set to 1 to cause wrapping at a 256K boundary.

Bit 7 Reserved

Backward Compatibility 2 Register (CR33)

Read/Write Address: 375H, Index 33H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>LOCK PLTW</td>
<td>BDR SEL</td>
<td>LOCK DACW</td>
<td>-DCK</td>
<td>R</td>
<td>DIS VDE</td>
<td>R</td>
</tr>
</tbody>
</table>

Bit 0 Reserved
Bit 1 DIS VDE - Disable Vertical Display End Extension Bits Write Protection
0 = VDE protection enabled
1 = Enables the write protect setting of the bit 7 of CR11 on bits 1 and 6 of CR7
Bit 2 Reserved
Bit 3 -DCK - DCLK Inverted
0 = DCLK is divided by 2 for 4 bits/pixel modes (see bit 6 of AR10 or bit 4 of CR3A) or is the internal DCLK
1 = DCLK inverted
Bit 4 LOCK DACW - Lock RAMDAC Writes
0 = Enable writes to RAMDAC registers
1 = Disable writes to RAMDAC registers
Bit 5 BDR SEL - Blank/Border Select
0 = BLANK active time is defined by CR2 and CR3
1 = BLANK is active during entire display inactive period (no border)
Bit 6 LOCK PLTW - Lock Palette/Border Color Registers
0 = Unlock Palette/Border Color registers
1 = Lock Palette/Border Color registers
Bit 7 Reserved
Backward Compatibility 3 Register (CR34)

Read/Write Address: 3?5H, Index 34H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>ENB</td>
<td>SFF</td>
<td>R</td>
<td>PCI</td>
<td>PCI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCI</td>
<td>RET</td>
<td></td>
<td>ABT</td>
<td>SNP</td>
</tr>
</tbody>
</table>

Bit 0 PCI SNP - PCI DAC snoop method
0 = Handling of PCI master aborts and retries during DAC cycles controlled by bits 1 and 2 of this register
1 = PCI master aborts and retries are not handled during DAC cycles

This bit applies only to PCI designs (not AGP).

Bit 1 PCI ABT - PCI master aborts during DAC cycles
0 = PCI master aborts handled during DAC cycles
1 = PCI master aborts not handled during DAC cycles

Bit 0 of this register must be cleared to 0 for this bit to be effective. This bit applies only to PCI designs (not AGP).

Bit 2 PCI RET - PCI retries during DAC cycles
0 = PCI retries handled during DAC cycles
1 = PCI retries not handled during DAC cycles

Bit 0 of this register must be cleared to 0 for this bit to be effective. This bit applies only to PCI designs (not AGP).

Bit 3 Reserved

Bit 4 ENB SFF - Enable Start Display FIFO Fetch Register
0 = Start Display FIFO Fetch register (CR3B) disabled
1 = Start Display FIFO Fetch register (CR3B) enabled

Bits 7-5 Reserved

CRT Register Lock Register (CR35)

Read/Write Address: 3?5H, Index 35H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>LOCK</td>
<td>LOCK</td>
<td>VTMG</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bits 3-0 Reserved

Bit 4 LOCK VTMG - Lock Vertical Timing Registers
0 = Vertical timing registers are unlocked
1 = The following vertical timing registers are locked:
 CR6
 CR7 (bits 7,5,3,2,0)
 CR9 (bit 5)
 CR10
 CR11 (bits 3-0)
 CR15
 CR16
CR6, CR7 registers are also locked by bit 7 of the Vertical Retrace End register (CR11).
Extended CRTC Registers

Bit 5 LOCK HTMG - Lock Horizontal Timing Registers
 0 = Horizontal timing registers are unlocked
 1 = The following horizontal timing registers are locked:
 CR00
 CR1
 CR2
 CR3
 CR4
 CR5
 CR17 (bit 2)

 All these registers (except bit 2 of CR17) are also locked by bit 7 of the Vertical Retrace End register (CR11).

Bit 7-6 Reserved

Configuration 1 Register (CR36)

Read/Write Address: 3?5H, Index 36H
Power-On Default: Depends on Strapping

If a pin is identified for a bit in this register, the state of that pin is latched at reset. These pins have internal pull-downs and their states are inverted before being latched, so these bits will default to 1 if the corresponding pin is not pulled up externally. If a pin is not associated with a bit, that bit always defaults to 1 at reset. Other configuration bits are found in CR37. These bits can be accessed only after A5H is written to CR39.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM SIZE</td>
<td>IOD</td>
<td>BP</td>
<td>APB</td>
<td>MCS</td>
<td>PI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 PI - PCI Interrupt (ROMD0 pin)
 0 = PCI register at offset 3DH reads 00H (no interrupt claimed)
 1 = PCI register at offset 3DH reads 01H (INTA used as interrupt pin)

Bit 1 MCS - Memory Clock Select (ROMD1 pin)
 0 = Use external MCLK on GPOUT pin
 1 = Use internal MCLK

 The invert of this bit and SR14_6 are ORed. This is used only for S3 testing.

Bit 2 APB - AGP PLL Test Mode (ROMD2 pin)
 0 = AGP PLL test mode (S3 testing only)
 1 = Normal operation

Bit 3 BP - BIOS Programmability (ROMD3 pin)
 0 = BIOS ROM is programmable
 1 = BIOS ROM is not programmable

Bit 4 IOD - I/O Disable (ROMD4 pin)
 0 = Disable I/O accesses (PCI04_0 ignored)
 1 = I/O access controlled via PCI04_0

Bits 7-5 MEM SIZE
 000 = 2 MBytes
 001 = 4 MBytes (except 8 MBytes for 4 bank 2Mx32 SDRAM – Rev. B)
 010 = 8 MBytes
 011 = 12 MBytes
 100 = 16 MBytes
 101 = 32 MBytes
 110 = Reserved
 111 = 32 MBytes for 4 bank 2Mx32 SDRAM – Rev. B

 These bits are programmed by the BIOS after boot up.
Configuration 2 Register (CR37)

Read/Write Address: 3?5H, **Index 37H**
Power-On Default: Depends on Strapping

If a pin is identified for a bit in this register, the state of that pin is latched at reset. These pins have internal pull-downs and their states are inverted before being latched, so these bits will default to 1 if the corresponding pin is not pulled up externally. If a pin is not associated with a bit, that bit always defaults to 1 at reset. Other configuration bits are found in CR36. These bits can be accessed only after A5H is written to CR39.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLK</td>
<td>AGP</td>
<td>AI</td>
<td>ECS</td>
<td>CS</td>
<td>SIDS</td>
<td>NT</td>
<td>ST</td>
</tr>
</tbody>
</table>

- **Bit 0:** ST - Static Idd Test (ROMD5 pin - S3 testing only)
 0 = Static Idd test enabled
 1 = Normal operation (default)

- **Bit 1:** NT - NAND Tree Test (ROMD6 pin)
 0 = NAND tree test
 1 = Normal operation

- **Bit 2:** SIDS - Subsystem ID Source (ROMD7 pin)
 0 = Read subsystem ID information from CR81-CR84
 1 = Read subsystem ID information from BIOS ROM

- **Bit 3:** CS - Clock Select (ROMA0 pin)
 0 = Use external DCLK on XIN pin, AGP 2x clock on SDCLKOUT pin (Rev. B) (S3 testing)
 1 = Use internal clocks

- **Bit 4:** ECS - ECLK Select (ROMA1 pin)
 0 = Use external ECLK on GOP0 pin and AGP 4x clock on VIPCLK pin (Rev. B) (S3 testing)
 1 = Use internal clocks

- **Bit 5:** AI - AGP IDSEL (ROMA2 pin)
 0 = IDSEL connected internally to AD16 (add-in card)
 1 = IDSEL connected internally to AD17 (motherboard)

- **Bit 6:** AGP - AGP Select (ROMA3 pin)
 0 = PCI protocol used
 1 = AGP protocol used

- **Bit 7:** ACLK - AGP Clock Select (ROMA4 pin) (Rev. B)
 0 = 1x AGP clock comes from bypass output
 1 = 1x AGP clock comes from AGP PLL output

Register Lock 1 Register (CR38)

Read/Write Address: 3?5H, **Index 38H**
Power-On Default: 00H

Loading 01xx10xx (e.g., 48H) into this register unlocks the extended CRTC register set from 20H to 3FH for read/writes. (x = don’t care)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Register Lock 2 Register (CR39)

Read/Write
Address: 375H, Index 39H
Power-On Default: 00H

Loading 101xxxxx (e.g., A0H) unlocks the CRTC extension registers from 40H to FFH for reading/writing (x = don't care). Loading A5H allows CR36, CR37, CR68 and CR6F to be written.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous 1 Register (CR3A)

Read/Write
Address: 375H, Index 3AH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIHR DISA</td>
<td>R</td>
<td>HST</td>
<td>ENH</td>
<td>256</td>
<td>TOP MEM</td>
<td>R</td>
<td>REFRESH CONTROL</td>
</tr>
</tbody>
</table>

Bits 1-0
REFRESH CONTROL
00 = Use DRAM auto refresh
01 = 1 refresh cycle per horizontal line
10 = 2 refresh cycles per horizontal line
11 = 3 refresh cycles per horizontal line

CR87_5-4 must also be set properly to control memory refresh.

Bit 2
Reserved

Bit 3
TOP MEM - Enable Top of Memory Access
0 = Top of memory access disabled
1 = Simultaneous VGA text and Enhanced modes are enabled. CPU and CRTC accesses are then directed to the top 32- or 64-KByte area of display memory depending on whether address bit 13 is 0 or 1 respectively.

Bit 4
ENH 256 - Enable 8 Bits/Pixel or Greater Color Enhanced Mode (2D only)
0 = Attribute controller shift registers configured for 4-bit modes
1 = Attribute controller shift register configured for 8-, 16- and 24/32-bit color 2D Enhanced modes

Bit 5
HST DFW - Enable High Speed Text Font Writing
0 = Disable high speed text font writing
1 = Enable high speed text font writing

Setting this bit to 1 is only required for DCLK rates greater than 40 MHz. See bit 6 of CR31.

Bit 6
Reserved

Bit 7
PCIHR DISA - PCI Read Bursts Disabled
0 = PCI read burst cycles enabled
1 = PCI read burst cycles disabled

Note: Bit 7 of CR66 must be set to 1 before this bit is set to 1. This bit does not apply to AGP operation.
Start Display FIFO Fetch Register (CR3B)

Read/Write Address: 3?5H, Index 3BH
Power-On Default: 00H

This value must lie in the horizontal blanking period and is typically 5 less than the value programmed in CR0. This parameter helps to ensure that adequate time is available during horizontal blanking for activities such as RAM refresh that require control of the display memory. This register must be enabled by setting bit 4 of CR34 to 1. When the Streams Processor is enabled, FIFO fetching starts at a fixed point based on an internal signal and this register is not effective.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>START DISPLAY FIFO FETCH 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 START DISPLAY FIFO FETCH 7-0
11-bit value = the time in character clocks from the active display start until the restart of fetching of FIFO data after the start of horizontal blanking.

Bit 8 of this value is CR5D_6. Bits 10-9 of this value are CR5B_3-2.

Interface Retrace Start Register (CR3C)

Read/Write Address: 3?5H, Index 3CH
Power-On Default: 00H

This value allows determination of the even/odd row active display starting positions when operating in an interlaced mode. This register is enabled by bit 5 of CR42.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERLACE RETRACE START POSITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 INTERLACE RETRACE START POSITION
10-bit Value = offset in terms of character clocks for Interlaced mode start/end in even/odd frames.

Bits 9-8 are CR5B_1-0.

Software Reset Register (CR3F)

Read/Write Address: 3?5H, Index 3FH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>ML</td>
<td>ME</td>
<td>3D</td>
<td>AGP</td>
<td>PCI</td>
<td>MIU</td>
</tr>
</tbody>
</table>

Bit 0 MIU - Memory Interface Software Reset
0 = Memory interface software reset inactive
1 = Memory interface software reset active

Bit 1 PCI - PCI Master Software Reset
0 = PCI master software reset inactive
1 = PCI master software reset active

Bit 2 AGP - AGP Master Software Reset
0 = AGP master software reset inactive
1 = AGP master software reset active

Bit 3 3D - 3D Engine Software Reset
0 = 3D Engine software reset inactive
1 = 3D Engine software reset active
Bit 4 ME - Master Engine Unit Software Reset
0 = Master Engine software reset inactive
1 = Master Engine software reset active

Bit 5 ML - Motion Compensation/LPB Software Reset
0 = Motion compensation/LPB software reset inactive
1 = Motion compensation/LPB software reset active

Bits 7-6 Reserved

System Configuration Register (CR40)
Read/Write (See bits) Address: 3?5H, Index 40H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>E2A</td>
</tr>
</tbody>
</table>

Bit 0 E2A - Enable 2D Engine Register I/O Access
0 = 2D Engine register I/O access disabled
1 = 2D Engine register I/O access enabled

This bit is used only for S3 testing.

Bits 7– 1 Reserved

BIOS Flag Register (CR41)
Read/Write Address: 3?5H, Index 41H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS FLAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 BIOS FLAG

Used by the video BIOS.

Mode Control Register (CR42)
Read/Write Address: 3?5H, Index 42H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>INTL</td>
<td>MOD</td>
<td>E</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bit 0 D2
0 = PCI power management D2 state disabled
1 = PCI power management D2 state enabled

When this bit is cleared to 0, PCI configuration state writes to enable the D2 power management state (PCIe0_1-0 = 10b) are ignored.

Bits 4-1 Reserved
Bit 5 INTL MODE - Interlaced Mode
0 = Noninterlaced
1 = Interlaced
This bit enables the function of CR3C.

Bits 7-6 Reserved

Extended Mode Register (CR43)

Read/Write Address: 3?5H, Index 43H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCTR X2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bits 6-0 Reserved

Bit 7 HCTR X2 - Horizontal Counter Double Mode
0 = Disable horizontal counter double mode
1 = Enable horizontal counter double mode (horizontal CRT parameters are doubled)

Hardware Graphics Cursor Mode Register (CR45)

Read/Write Address: 3?5H, Index 45H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>HWGC 1280</td>
<td>R</td>
<td>CU</td>
<td>R</td>
<td>HWGC ENB</td>
</tr>
</tbody>
</table>

Bit 0 HWGC ENB - Hardware Graphics Cursor Enable
0 = Hardware graphics cursor disabled in any mode
1 = Hardware graphics cursor enabled in Enhanced mode

Bit 1 Reserved

Bit 2 CU - Cursor Update
0 = The last cursor update made during a frame is effective
1 = Only the first cursor update made during a frame is effective

Bit 3 Reserved

Bit 4 HWGC 1280 - Hardware Cursor Right Storage
0 = Function disabled
1 = For 4 bits/pixel, the last 256 bytes in each 1-KByte line of the hardware cursor start address become the hardware graphics cursor storage area. For 8 bits/pixel, the last 512 bytes in each 2-KByte line of the hardware cursor start address become the hardware graphics cursor storage area. In either case, bits 1-0 of CR4D must be 11b.

Bits 7-5 Reserved
Hardware Graphics Cursor Origin-X Registers (CR46, CR47)

Read/Write
Address: 3?5H, Index 46H, 47H
Power-On Default: 0000H

The high order three bits are written into CR46 and the low order byte is written into CR47.

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>HWGC ORG X (H)</td>
<td></td>
<td>HWGC ORG X (L)</td>
<td></td>
</tr>
</tbody>
</table>

- Bits 10-0: HWGC ORG X(H)(L) - X-Coordinate of Cursor Left Side
- Bits 15-11: Reserved

Hardware Graphics Cursor Origin-Y Registers (CR48, CR49)

Read/Write
Address: 3?5H, Index 48H, 49H
Power-On Default: Undefined

The high order three bits are written into CR48 and the low order byte is written into CR49.

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>HWGC ORG Y (H)</td>
<td></td>
<td>HWGC ORG Y (L)</td>
<td></td>
</tr>
</tbody>
</table>

- Bits 10-0: HWGC ORG Y (H)(L) - Y-Coordinate of Cursor Upper Line
- Bits 15-11: Reserved

Hardware Graphics Cursor Foreground Color Stack Register (CR4A)

Read/Write
Address: 3?5H, Index 4AH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TRUE COLOR FOREGROUND STACK (0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Bits 7-0: TRUE COLOR FOREGROUND STACK (0-3)

Four foreground color registers are stacked at this address. The stack pointer (common with CR4B) is reset to 0 by reading the Hardware Graphics Cursor Mode register (CR45). Each write to this register (CR4A) increments the stack pointer by 1. 8-bit color with single clocking requires 1 write. For 2x clocking, the color for the first pixel clocked out is programmed in register 0 and the color for the second pixel clocked out is programmed in register 1. 15/16-bit color with single clocking requires 2 writes. For 2x clocking, the color for the first pixel clocked out is programmed in registers 0 and 1 and the color for the second pixel clocked out is programmed in registers 3 and 4. 24-bit color requires 3 writes.
Hardware Graphics Cursor Background Color Stack Register (CR4B)

Read/Write Address: 3?5H, Index 4BH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRUE COLOR BACKGROUND STACK (0-3)</td>
</tr>
</tbody>
</table>

Bits 7-0 TRUE COLOR BACKGROUND STACK (0-3)

Four foreground color registers are stacked at this address. The stack pointer (common with CR4B) is reset to 0 by reading the Hardware Graphics Cursor Mode register (CR45). Each write to this register (CR4B) increments the stack pointer by 1. 8-bit color with single clocking requires 1 write. For 2x clocking, the color for the first pixel clocked out is programmed in register 0 and the color for the second pixel clocked out is programmed in register 1. 15/16-bit color with single clocking requires 2 writes. For 2x clocking, the color for the first pixel clocked out is programmed in registers 0 and 1 and the color for the second pixel clocked out is programmed in registers 3 and 4. 24-bit color requires 3 writes.

Hardware Graphics Cursor Storage Start Address Registers (CR4C, CR4D)

Read/Write Address: 3?5H, Index 4CH, 4DH
Power-On Default: Undefined

The high order four bits are written into CR4C and the low order byte is written into CR4D. 10 LSB 0’s are added to the address by the hardware.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>HWGC STA(H)</td>
<td>HWGC STA(L)</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 Reserved = 0 (4K alignment)
Bits 14-2 HWGC STA(H)(L) - Hardware Graphics Cursor Storage Start Address
Bit 15 Reserved

Hardware Graphics Cursor Pattern Display Start X-PXL-Position Register (CR4E)

Read/Write Address: 3?5H, Index 4EH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>HWGC PAT DISP START X-POS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 5-0 HWGC PAT DISP START X-POS - HWGC Pattern Display Start-X Pixel Position

This value is the offset (in pixels) from the left side of the 64x64 cursor pixel pattern from which the cursor is displayed. This allows a partial cursor to be displayed at the left border of the display.

Bits 7-6 Reserved
Hardware Graphics Cursor Pattern Disp Start Y-PXL-Position Register (CR4F)

Read/Write Address: 3?5H, Index 4FH
Power-On Default: Undefined

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>HEWC PAT DISP START Y-POS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 5-0 HWGC PAT DISP START Y-POS - HWGC Pattern Display Start-Y Pixel Position

This value is the offset (in pixels) from the top of the 64x64 cursor pixel pattern from which the cursor is displayed. This allows a partial cursor to be displayed at the top of the display.

Bits 7-6 Reserved

Extended System Control 1 Register (CR50)

Read/Write Address: 3?5H, Index 50H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE-SCR-W</td>
<td>PXL-LNGH</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>GESW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 Extension bit 2 of the screen width definition. See bits 7-6 below.

Bits 3-1 Reserved

Bits 5-4 PXL-LNGH - Pixel Length Select (2D/3D)
00 = 1 byte (Default). This corresponds to a pixel length of 4 or 8 bits/pixel in MM850C_2.
01 = 2 bytes, 16 bits/pixel
10 = Reserved
11 = 4 bytes, 32 bits/pixel

These bits select the pixel length for Enhanced mode command execution through either the 2D or 3D Engines.

Bits 7-6 GE-SCR-W - 2D Graphics Engine Command Screen Pixel Width (2D only)
Bit 0 of this register is the most significant bit of this definition.
000 = 1024 (or 2048 if bit 1 of CR31 =1) (Default)
001 = 640
010 = 800 (or 1600x1200x4 if bit 2 of MM850C_2 = 0)
011 = 1280
100 = 1152
101 = Reserved
110 = 1600
111 = Use Global Bitmap Descriptor

Extended System Control 2 Register (CR51)

Read/Write Address: 3?5H, Index 51H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERL</td>
<td>LSW9-8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 5-0 Reserved

Bits 5-4 LSW9-8 - Logical Screen Width Bits 9-8
These are two extension bits of the Offset register (CR13).

Bits 6 Reserved
Extended CRTC Registers

Bit 7 ERL - Enable Register Load
 0 = No effect
 1 = Enable function of CR66_4 and CR66_5 (load certain Streams Processor registers on VSYNC)

This bit is automatically cleared to 0 after being set.

Extended BIOS Flag 1 Register (CR52)

Read/Write Address: 375H, Index 52H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXT BIOS FLAG 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 EXT BIOS FLAG 1

See the S3 video BIOS documentation for the coding of this register.

Extended Memory Control 1 Register (CR53)

Read/Write Address: 375H, Index 53H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA</td>
<td>MEM</td>
<td>SWP</td>
<td>NBL</td>
<td>MMIO</td>
<td>WIN</td>
<td>OME</td>
<td>R</td>
</tr>
</tbody>
</table>

Bit 3-0 Reserved

Bit 4 OME Old MMIO Enable
 0 = Disable old MMIO
 1 = Old MMIO enabled

Old MMIO is used only for S3 testing. PCI04_1, SP9_7 and bits 5 and 7 of this register also control MMIO accesses. Only new MMIO (enabled by default) should be used for software written for Savage4.

Bit 5 MMIO WIN - Old MMIO Window
 0 = Old MMIO window enabled at A8000H - AFFFH. A0000H - A7FFF available for image transfers
 1 = Old MMIO window enabled at B8000H - BFFFFH. A0000H - B7FFFH are not used (no image transfer area)

Bit 4 of this register must be programmed to 1 for this bit to be effective.

Bit 6 SWP NBL - Swap Nibbles
 0 = No nibble swap
 1 = Swap nibbles in each byte of a linear memory address read or write operation

Bit 7 VGA MEM - VGA Memory Access Disable
 0 = Enable memory access to A0000-BFFFF address range
 1 = Disable memory access to A0000-BFFFF address range
Extended RAMDAC Control Register (CR55)

Read/Write
Address: 375H, Index 55H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>HCS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bits 3-0
Reserved

Bit 4
HCS - Hardware Cursor MS/X11 Mode Select
0 = MS Windows mode (Default)
1 = X11 Window mode

This bit select the type of decoding used for the 64x64x2 storage array of the hardware graphics cursor.

Bits 7-5
Reserved

External Sync Control 1 Register (CR56)

Read/Write
Address: 375H, Index 56H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>TOV</td>
<td>TOH</td>
<td>R</td>
</tr>
</tbody>
</table>

Bit 0
Reserved

Bit 1
TOH - Tri-state off HSYNC
0 = HSYNC output buffer on
1 = HSYNC output buffer in hi-Z state

Bit 2
TOV - Tri-state off VSYNC
0 = VSYNC output buffer on
1 = VSYNC output buffer in hi-Z state

Bits 7-3
Reserved

Linear Address Window Control Register (CR58)

Read/Write
Address: 375H, Index 58H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>ELA</td>
<td>CBO</td>
<td>R</td>
<td>WIN SIZE</td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0
WIN SIZE - Linear Addressing Window Size
00 = Reserved
01 = Reserved
10 = Reserved
11 = 32 MBytes

Bit 2
Reserved

Bit 3
CBO - CPU Base Address Overflow
This is bit 22 of the CPU base address. See CR6A. This function is moved to CR92_5 for Rev. B and this bit is reserved

Bit 4
ELA - Enable Linear Addressing
0 = Disable linear addressing
1 = Enable linear addressing

Bits 7-5
Reserved
Linear Address Window Position Register (CR59) (Mapping 1, CRB0_7 = 0) (Rev. A)

Read/Write Address: 3?5H, Index 59H
Power-On Default: 70H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LA WINDOW POSITION</td>
</tr>
</tbody>
</table>

Bits 7-0 LA WINDOW POSITION

Value = Bits 31-24 of linear addressing window position

These bits are common with bits 31-24 of the PCI base address 1 for address mapping 1. A write to either register updates both. However, the base address is normally programmed by the system BIOS and should never be changed via this register except for test purposes. Note that only 16 MBytes can be accessed at this base address when using address mapping 1.

Linear Address Window Position Register (CR59) (Mapping 1, CRB0_7 = 0) (Rev. B)

Read/Write Address: 3?5H, Index 59H
Power-On Default: 70H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LA WINDOW POSITION</td>
</tr>
</tbody>
</table>

Bits 7-0 LA WINDOW POSITION

Value = Bits 31-25 of linear addressing window position

These bits are common with bits 31-25 of the PCI base address 1 for address mapping 1. A write to either register updates both. However, the base address is normally programmed by the system BIOS and should never be changed via this register except for test purposes. Note that only 16 MBytes can be accessed at this base address when using address mapping 1.

Linear Address Window Position Register (CR59) (Mapping 0, CRB0_7 = 1)

Read/Write Address: 3?5H, Index 59H
Power-On Default: 70H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LA WINDOW POSITION</td>
</tr>
</tbody>
</table>

Bits 7-0 Reserved

Bits 7-3 LA WINDOW POSITION

Value = Bits 31-27 of linear addressing window position

These bits are common with bits 31-27 of the PCI base address 1 for address mapping 0. A write to either register updates both. However, the base address is normally programmed by the system BIOS and should never be changed via this register except for test purposes.
Extended CRTC Registers

Extended Horizontal Overflow 2 Register (CR5B)

Read/Write Address: 375H, Index 5BH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS6-5</td>
<td>EHB7-6</td>
<td>SFF10-9</td>
<td>IRP9-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bits 1-0:** IRP9-8 - Interface Restart Position (CR3C) Bits 9-8
- **Bits 3-2:** SFF10-9 - Start FIFO Fetch (CR3B) Bits 10-9
- **Bits 5-4:** EHB7-6 - End Horizontal Blank (CR3_4-0, CR5_7) Bits 7-6

 This is only valid when SR5D_7 = 1.
- **Bits 7-6:** EHS6-5 - End Horizontal Blank (CR5_4-0) Bits 6-5

 This is only valid when SR5D_7 = 1.

General Output Port Register (CR5C)

Read/Write Address: 375H, Index 5CH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>GOP0</td>
</tr>
</tbody>
</table>

- **Bit 0:** GOP0

 The state of this bit is reflected on the GOP0 pin.
- **Bits 7-1:** Reserved

Extended Horizontal Overflow 0 Register (CR5D)

Read/Write Address: 375H, Index 5DH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMS</td>
<td>SFF</td>
<td>8</td>
<td>HSP</td>
<td>8</td>
<td>SHS</td>
<td>8</td>
<td>HBP</td>
</tr>
</tbody>
</table>

- **Bit 0:** HT 8 - Horizontal Total (CR0) Bit 8
- **Bit 1:** HDE 8 - Horizontal Display End (CR1) Bit 8
- **Bit 2:** SHB 8 - Start Horizontal Blank (CR2) Bit 8
- **Bit 3:** HBP - Horizontal Blank Period

 0 = Horizontal blank period is equal to or less than 64 character clocks (256 character clocks if CR5D_7 = 1)

 1 = Horizontal blank period is greater than 64 character clocks (256 character clocks if CR5D_7 = 1)

 See CR5_4-0.
- **Bit 4:** SHS 8 - Start Horizontal Sync Position (CR4) Bit 8
- **Bit 5:** HSP - Horizontal Sync Period

 0 = Horizontal sync period is equal to or less than 32 character clocks (128 character clocks if CR5D_7 = 1)

 1 = Horizontal sync period is greater than 32 character clocks (128 character clocks if CR5D_7 = 1)

 See CR5_4-0.
Extended CRTC Registers

Bit 6 SFF 8 - Start FIFO Fetch (CR3B) Bit 8
Bit 7 NMS - New Mode Support
 0 = All modes except 1280x1024x24
 1 = 1280x1024x24 mode

When this bit is set, the end horizontal blank (CR3_4-0, CR5_7) and end horizontal sync (CR5_4-0) parameters have new definitions and CR5B_7-4 must be programmed.

Extended Vertical Overflow Register (CR5E)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 3?5H, Index 5EH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-On Default: 00H</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>LCM</td>
<td>10</td>
<td>R</td>
<td>VRS</td>
<td>10</td>
<td>R</td>
<td>SVB</td>
</tr>
</tbody>
</table>

Bit 0	VT 10 - Vertical Total (CR6) Bit 10
Bit 1	VDE 10 - Vertical Display End (CR12) Bit 10
Bit 2	SVB 10 - Start Vertical Blank (CR15) Bit 10
Bit 3	Reserved
Bit 4	VRS 10 - Vertical Retrace Start (CR10) Bit 10
Bit 5	Reserved
Bit 6	LCM 10 - Line Compare Position (CR18) Bit 10
Bit 7	Reserved

Extended Horizontal Overflow 1 Register (CR5F)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 3?5H, Index 5FH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-On Default: 00H</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHS10-9</td>
<td>SHB10-9</td>
<td>HDE10-9</td>
<td>HT10-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0	HT10-9 - Horizontal Total (CR0) Bits 10-9
Bits 3-2	HDE10-9 - Horizontal Display End (CR1) Bits 10-9
Bits 5-4	SHB10-9 - Start Horizontal Blank (CR2) Bits 10-9
Bits 7-6	SHS10-9 - Start Horizontal Sync Position (CR4) Bits 10-9
SDCLK Skew Register (CR60)

Read/Write Address: 375H, Index 60H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SDCLKX SKEW</td>
</tr>
</tbody>
</table>
| 6 | 0000 = SDCLKX not skewed
| 5 | 0001 = SDCLKX generated 9 units earlier than 0000 setting
| 4 | 0010 = SDCLKX generated 8 units earlier than 0000 setting
| 3 | 0011 = SDCLKX generated 7 units earlier than 0000 setting
| 2 | 0100 = SDCLKX generated 6 units earlier than 0000 setting
| 1 | 0101 = SDCLKX generated 5 units earlier than 0000 setting
| 0 | 0110 = SDCLKX generated 4 units earlier than 0000 setting
| | 0111 = SDCLKX generated 3 units earlier than 0000 setting
| | 1000 = SDCLKX generated 2 units earlier than 0000 setting
| | 1001 = SDCLKX generated 1 unit earlier than 0000 setting
| | 1010 = SDCLKX generated 1 unit later than 0000 setting
| | 1011 = SDCLKX generated 2 units later than 0000 setting
| | 1100 = SDCLKX generated 3 units later than 0000 setting
| | 1101 = SDCLKX generated 4 units later than 0000 setting
| | 1110 = SDCLKX generated 5 units later than 0000 setting
| | 1111 = SDCLKX generated 6 units later than 0000 setting

SDCLKX = SDCLK1, SDCLK2 and SDCLKOUT

Bits 7-4 are reserved.

Extended Miscellaneous Control Register (CR65)

Read/Write Address: 375H, Index 65H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>DLY HDE</td>
</tr>
<tr>
<td>6</td>
<td>DLY BLANK</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>DH</td>
</tr>
</tbody>
</table>

Bit 0 - DH - See bits 7-6 below.

Bits 2-1 are reserved.

Bits 4-3 - DLY BLANK - Delay BLANK by DCLK

00 = No delay of BLANK
01 = Delay BLANK for 1 DCLK
10 = Delay BLANK for 2 DCLKs
11 = Delay BLANK for 3 DCLKs

BLANK is an internal signal. This function will not normally be used.

Bit 5 is reserved.

Bits 0, 7-6 - DLY HDE - Delay Horizontal Display Enable

000 = No delay
001 = 1 DCLK delay
010 = 2 DCLK delay
011 = 3 DCLK delay
100 = 4 DCLK delay
101 = 5 DCLK delay
110 = 6 DCLK delay
111 = 7 DCLK delay
Extended Miscellaneous Control 1 Register (CR66)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
</table>
| 7 | EN 2D/3D - Enable 2D/3D Engine Operation | 0 = Disable 2D/3D Engine operation
 | 1 = Enable 2D/3D Engine operation |
| 6 | SW RST - Software Reset | 0 = No function
 | 1 = Software reset of the 2D Graphics Engine |
| 5 | PCI DIS - PCI Disconnect Enable | 0 = PCI disconnects disabled
 | 1 = PCI disconnects enabled |
| 4 | PLC - Primary Stream Register Loading Control | 0 = Load certain working primary stream registers when VSYNC active
 | 1 = Load certain working primary streams registers when CR51_7 = 1 (or PageFlip command issued) and VSYNC active |
| 3 | SLC - Secondary Stream Register Loading Control | 0 = Load working secondary stream registers when VSYNC active
 | 1 = Load working secondary stream registers when CR51_7 = 1 and VSYNC active |
| 2 | Reserved | |
| 1 | PCI RET - PCI Retry Enable | 0 = PCI bus retry disabled
 | 1 = PCI bus retry enabled |

- **Bit 0**: This bit must only be programmed during screen off (SR1_5 = 1) or during the vertical retrace period. Setting SR1_5 to 1 may take up to 3 HSYNCs to take effect. This bit is ORed with MM850C_0. This bit must be set to 1 for mastered image transfers.

- **Bit 1**: Setting this bit has the same effect as MM8504_15-14 (write) = 10b.

- **Bit 4**: This bit applies to those primary stream registers that are programmed to shadow registers. These are MM81C0 and MM81C4.

- **Bit 5**: This bit applies to those secondary stream registers that are programmed to a shadow register and the new values do not take effect until the next VSYNC. These are MM8190, MM8198, MM81A0, MM81D0, MM81D4, MM81D8, MM81E0, MM81E4 and MM81E8, MM8304, MM8308.

- **Bit 6**: This bit does not apply to AGP operation.
Extended Miscellaneous Control 2 Register (CR67)

Read/Write Address: 375H, Index 67H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR MODE</td>
<td>STREAMS MODE</td>
<td>R</td>
<td>VCLK PHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 VCLK PHS - VCLK Phase With Respect to DCLK
0 = VCLK is 180° out of phase with DCLK (inverted)
1 = VCLK is in phase with DCLK

Pixels are clocked out of the RAMDAC at the VCLK rate.

Bit 1 Reserved

Bits 3-2 STREAMS MODE
00 = Streams Processor disabled
01 = Primary Stream data from graphics controller with secondary stream overlay
10 = Reserved
11 = Full Streams Processor operation (primary and secondary streams from all supported sources)

The Streams Processor should only be enabled or disabled during the VSYNC period. The 01 setting is required for automatic centering and expansion of the flat panel display with the Streams Processor enabled. See CR90_3 and CR90_6.

Bits 7-4 COLOR MODE - RAMDAC Color Mode
0000 = 8-bit color
0001 = 8-bit color, clock doubled
0010 = 15-bit color (X.5.5.5)
0011 = 15-bit color, (X.5.5.5) clock doubled
0100 = 16-bit color (5.6.5)
0101 = 16-bit color (5.6.5) clock doubled
1101 = 32-bit color (X.8.8.8)

All other mode values are reserved. This field is only valid when Streams Processor operation is disabled (CR67_3-2 = 00b). With the Streams Processor enabled, the color mode is defined by MM8180_26-24. Clock doubled modes require that SR18_7 = 1 and SR15_4 = 1.

Memory Control 1 Register (CR68)

Read/Write Address: 375H, Index 68H
Power-On Default: 00H

These bits can be accessed only after A5H is written to CR39.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTS</td>
<td>TRP</td>
<td>TRAS</td>
<td>TDPL</td>
<td>TRC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 TRC - SGRAM Auto Refresh to New Command
00 = 7 MCLKs
01 = 8 MCLKs
10 = 9 MCLKs
11 = 10 MCLKs

This is the time from a CAS before RAS refresh cycle to the next refresh cycle or activate command.

Bit 2 TDPL - SGRAM Last Data In to Row Precharge Delay (Write Cycle)
0 = 1 MCLK
1 = 2 MCLK
Bit 3 TRAS - Minimum -SDRAS Low Timing Select
0 = 6 MCLKs
1 = 7 MCLKs

This value assumes a single command (e.g., read) is executed. The time will extend one clock for each additional command.

Bits 5-4 TRP - -SDRAS Precharge Time
00 = Reserved
01 = Reserved
10 = 2 MCLKs
11 = 3 MCLKs

This is the time from a precharge command to a refresh cycle (if required) or the next activate command.

Bits 7-6 MTS - Memory Type Select
00 = 2Mx32 (SDRAM) (including 32MB, 4 bank, CR36_7-5 = 111, CR92_6 = 1 – Rev B)
01 = 1Mx16 (SDRAM) (up to 16MB, CR92_6 = 0) or [2Mx32 4 bank SDRAM (8 MB, CR36_7-5 = 001, CR92_6 = 1, Rev B)]
10 = 2MX32 (4 Bank SDRAM) (16MB, CR92_6 = 1)
11 = 4MX16 (4 Bank SDRAM) (32MB)
10 = 512Kx32 (SGRAM)
11 = 256Kx32 (SGRAM)

Extended System Control 3 Register (CR69)
Read/Write
Address: 375H, Index 69H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>PS</th>
<th>DISPLAY START ADDRESS</th>
</tr>
</thead>
</table>

Bits 6-0 DISPLAY START ADDRESS
Value = the upper 7 bits (22-16) of the display start address
This allows addressing of up to 32 MBytes of display memory.

Bit 7 PS - Primary Stream Definition
0 = Standard VGA registers are used to control the primary stream
1 = Memory mapped registers MM81C0 and MM81C4 are used to control the primary stream.

Extended System Control 4 Register (CR6A)
Read/Write
Address: 375H, Index 6AH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>CPU BASE ADDRESS</th>
</tr>
</thead>
</table>

Bits 7-0 CPU BASE ADDRESS
Value = Bits 21-14 of the CPU base address
Bit 22 is CR58_3. This allows accessing of up to 32 MBytes of display memory via 64K pages. Bit 0 of CR31 must be set to 1 to enable this field. If linear addressing is enabled and a 64 KByte window is specified, these bits specify the 64K page to be accessed at A0000H.
Extended BIOS Flag 3 Register (CR6B)

<table>
<thead>
<tr>
<th>Address: 375H, Index 6BH</th>
<th>Power-On Default: 00H</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>EXT-BIOS-FLAG-REGISTER-3</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0: EXT-BIOS-FLAG-REGISTER-3
This register is reserved for use by the S3 BIOS.

Extended BIOS Flag 4 Register (CR6C)

<table>
<thead>
<tr>
<th>Address: 375H, Index 6CH</th>
<th>Power-On Default: 00H</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>EXT-BIOS-FLAG-REGISTER-4</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0: EXT-BIOS-FLAG-REGISTER-4
This register is reserved for use by the S3 BIOS.

Extended BIOS Flag 5 Register (CR6D)

<table>
<thead>
<tr>
<th>Address: 375H, Index 6DH</th>
<th>Power-On Default: 00H</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>RESERVED</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0: Reserved
This register is reserved for use by the BIOS.

DAC Signature Test Data Register (CR6E)

<table>
<thead>
<tr>
<th>Address: 375H, Index 6EH</th>
<th>Power-On Default: 00H</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>DAC SIGNATURE TEST DATA</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0: DAC SIGNATURE TEST DATA
Memory Control 2 Register (CR6F)

Read/Write Address: 3?5H, Index 6FH
Power-On Default: FEH

These bits can be accessed only after A5H is written to CR39.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>CAS LATENCY</td>
<td>R</td>
<td>TRRD</td>
<td>R</td>
<td>R</td>
<td>SR</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 SR - Software Reset Enable
0 = Software resets disabled (default)
1 = Software resets enabled

This bit controls the resets in CR3F. It should be set only if CR3F is to be programmed, and should be immediately cleared to 0 after programming CR3F.

Bits 2-1 Reserved

Bit 3 TRRD - SGRAM Time Interval Select for Consecutive Bank Activation
0 = 2 MCLKs
1 = 3 MCLKs

Bit 4 Reserved

Bits 6-5 SGRAM CAS Latency
00 = 4 MCLKs
01 = 4 MCLKs
10 = 2 MCLKs
11 = 3 MCLKs

Bit 7 Reserved

AGP Control Register (CR70)

Read/Write Address: 3?5H, Index 70H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>R</td>
<td>NW</td>
<td>ACS</td>
<td>SSS</td>
<td>ASM</td>
<td>AP</td>
<td>ACS</td>
</tr>
</tbody>
</table>

Bit 0 ACS - AGP Command Suspend
0 = Normal operation or resume from suspend
1 = Suspend sending commands to system logic

The suspend mode is selected via bit 2 of this register.

Bit 1 AP - AGP Priority
0 = Always send low priority commands
1 = Always send high priority commands

Bit 2 ASM - AGP Suspend Mode
0 = Pause sending of commands to system logic. Resume from previous operating state when bit 0 of this register is cleared to 0.
1 = Reset. All current commands discarded. Resume from initial idle state when bit 0 of this register is cleared to 0.

Bit 3 SSS - Stop Sideband Strobe
0 = SB_STB signal is kept running when bit 0 of this register is set to 1
1 = SB_STB signal is stopped when bit 0 of this register is set to 1

Bit 4 ACS - AGP Command Split
0 = Normal operation
1 = Split AGP reads into 32-byte bursts
Extended CRTC Registers

Bit 5 NW - AGP No Wait
 0 = 1 SCLK delay between -GNT assertion and -PIPE assertion
 1 = No delay between -GNT assertion and -PIPE assertion
Bit 6 Reserved
Bit 7 SB - AGP Sideband Addressing Capability
 0 = Set PCI84_9 to 0 (sideband addressing not supported)
 1 = Set PCI84_0 to 1 (sideband addressing supported)

Primary Stream Timeout Register (CR71)
Read/Write Address: 375H, Index 71H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PRIMARY STREAM TIMEOUT COUNT</td>
</tr>
</tbody>
</table>

Bits 7-0 PRIMARY STREAM TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.

TV Timeout Register (CR72)
Read/Write Address: 375H, Index 72H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TV TIMEOUT COUNT</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 TV TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.

Secondary Stream Timeout Register (CR73)
Read/Write Address: 375H, Index 73H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SECONDARY STREAM TIMEOUT COUNT</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 SECONDARY STREAM TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.
Master Control Unit Timeout Register (CR74)
Read/Write Address: 3?5H, Index 74H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 MASTER CONTROL UNIT TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.

Command Buffer Timeout Register (CR75)
Read/Write Address: 3?5H, Index 75H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 COMMAND BUFFER TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.

LPB Timeout Register (CR76)
Read/Write Address: 3?5H, Index 76H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 LPB TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.

Motion Compensation Timeout Register (CR77)
Read/Write Address: 3?5H, Index 77H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 MOTION COMPENSATION TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.
CPU Timeout Register (CR78)

- **Read/Write Address:** 375H, Index 78H
- **Power-On Default:** 00H

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>CPU TIMEOUT COUNT</td>
</tr>
</tbody>
</table>

- **Value:** Number of QWords transferred to/from the frame buffer before the memory bus grant is removed.
- **If CR88_2 = 1, the count is in MCLKs.**

2D Graphics Engine Timeout Register (CR79)

- **Read/Write Address:** 375H, Index 79H
- **Power-On Default:** 00H

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>2D GRAPHICS ENGINE TIMEOUT COUNT</td>
</tr>
</tbody>
</table>

- **Value:** Number of QWords transferred to/from the frame buffer before the memory bus grant is removed.
- **If CR88_2 = 1, the count is in MCLKs.**

3D Z Read Buffer Timeout Register (CR7A)

- **Read/Write Address:** 375H, Index 7AH
- **Power-On Default:** 00H

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>3D ENGINE Z READ BUFFER TIMEOUT COUNT</td>
</tr>
</tbody>
</table>

- **Value:** Number of QWords transferred to/from the frame buffer before the memory bus grant is removed.
- **If CR88_2 = 1, the count is in MCLKs.**
3D Z Write Buffer Timeout Register (CR7B)

Read/Write Address: 375H, Index 7BH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D ENGINE Z WRITE BUFFER TIMEOUT COUNT

Bits 7-0 3D ENGINE Z WRITE BUFFER TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

3D Destination Write Timeout Register (CR7C)

Read/Write Address: 375H, Index 7CH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D DESTINATION WRITE TIMEOUT COUNT

Bits 7-0 3D DESTINATION WRITE TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

3D Destination Read Timeout Register (CR7D)

Read/Write Address: 375H, Index 7DH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D DESTINATION READ TIMEOUT COUNT

Bits 7-0 3D DESTINATION READ TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.
3D Texture Buffer Timeout Register (CR7E)

Read/Write Address: 375H, Index 7EH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3D TEXTURE BUFFER TIMEOUT COUNT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 3D TEXTURE BUFFER TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.

Drive Current Control Register (CR80)

Read/Write Address: 375H, Index 80H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDD</td>
<td>MCD</td>
<td>MAD</td>
<td>PDD</td>
<td>R</td>
<td>SBD</td>
<td>PCD</td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 PCD - PCI/AGP Drive Current (3.3V VDDq)
00 = 24 mA (default for PCI bus operation (CR37_6 = 0))
01 = 16 mA (default for AGP bus operation (CR37_6 = 1))
10 = 8 mA
11 = 4 mA
This bit applies to AD[31:0],-C/BE[3:0], PAR, -FRAME, -IRDY, -TRDY, -STOP, -DEVSEL, -REQ, -PIPE, AD_STB[1:0], -AD_STB[1:0] and -RBF. Bit 0 is the same bit as CR37_6 and its value at reset depends on strapping of the ROMA3 pin.

Bit 2 SB - SBA[7:0], SB_STB, -SB_STR Drive Current
0 = 8 mA
1 = 16 mA

Bit 3 Reserved

Bit 4 PDD - PD[63:0] Drive Current
0 = 16 mA
1 = 8 mA

Bit 5 MAD - MA[10:0] Drive Current
0 = 16 mA
1 = 8 mA

Bit 6 MCD - Memory Control Drive Current
0 = 16 mA
1 = 8 mA
This bit applies to -RAS, -CAS, -WE, -DSF, CKE, -CS[1:0] AND DQM[7:0].

Bit 7 SDD - SDCLK[1:2] Drive Current
0 = 24 mA
1 = 16 mA
PCI Subsystem Vendor ID Shadow Low Register (CR81)
Read/Write Address: 3?5H, Index 81H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI SUBSYSTEM VENDOR ID LOW BYTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 PCI SUBSYSTEM VENDOR ID LOW BYTE
This register shadows the byte at PCI configuration space index 2CH.

PCI Subsystem Vendor ID Shadow High Register (CR82)
Read/Write Address: 3?5H, Index 82H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI SUBSYSTEM VENDOR ID HIGH BYTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 PCI SUBSYSTEM VENDOR ID HIGH BYTE
This register shadows the byte at PCI configuration space index 2DH.

PCI Subsystem ID Shadow Low Register (CR83)
Read/Write Address: 3?5H, Index 83H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI SUBSYSTEM ID LOW BYTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 PCI SUBSYSTEM ID LOW BYTE
This register shadows the byte at PCI configuration space index 2EH.

PCI Subsystem ID Shadow High Register (CR84)
Read/Write Address: 3?5H, Index 84H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI SUBSYSTEM ID HIGH BYTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 PCI SUBSYSTEM ID HIGH BYTE
This register shadows the byte at PCI configuration space index 2FH.
FIFO Fetch Delay Register (CR85)

Read/Write Address: 375H, Index 85H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>FDE</td>
<td>R</td>
<td>FIFO DRAIN DELAY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 FIFO DRAIN DELAY

Value = number of character clocks to delay draining of the display FIFO with respect to the request for FIFO filling.

A high value may be required in some cases to prevent draining of data from the display (primary/secondary stream) FIFO before valid data has been fetched from memory into the FIFO. The optimum value must be determined empirically. A starting value of 010b is recommended. In general, the smallest value that works should be used. Bit 4 of this register must be set to 1 for these bits to be effective.

Bit 3 Reserved

Bit 4 FFT - FIFO Fetch Timing
0 = Fetch primary and secondary stream data from memory at the end of the horizontal blanking region
1 = Fetch primary and secondary stream data from memory in the middle of the horizontal blanking region

This bit should be set to 1 for all accelerated modes.

Bits 7-5 Reserved

DAC Power Up Register (CR86)

Read/Write Address: 375H, Index 86H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPSD</td>
<td>DAC POWER UP TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 6-0 DAC POWER UP TIME
value = number of character clocks from the start of blanking at which the internal DACs are powered up

This value must be at least 1 less than the End Horizontal Blank value programmed in CR5D_3, CR5_7 and CR3_4-0. A value of 1 less starts DAC power up 1 character clock before the end of blanking. A value of 2 less starts DAC power up 2 character clocks before the end of blanking, etc. When the DACs power up, there is a voltage spike that affects the RGB outputs if they are active. Powering up the DACs earlier reduces the power savings but also reduces the chance that the power up voltage spike will affect the active display.

Bit 7 DPSD - DAC Power Saving Disable
0 = RAMDAC power saving enabled (DAC turned off at BLANK start and on at position programmed in bits 6-0 of this register
1 = RAMDAC power saving disabled (RAMDAC never powered down)

SGRAM Control 0 Register (CR87)

Read/Write Address: 375H, Index 87H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWP</td>
<td>R</td>
<td>REFRESH</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>BWC</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 BWC - Block Write Cycles
0 = 2-cycle block write
1 = 1 cycle block write
Bits 3-1 Reserved for S3 Testing

Bits 5-4 REFRESH
00 = Select 100 MHz MCLK to count refresh counter
01 = Select 125 MHz MCLK to count refresh counter
10 = Select 143 MHz MCLK to count refresh counter
11 = Reserved for S3 testing

Bit 6 Reserved

Bit 7 LWP - LPB Write Priority
0 = Normal LPB memory write access priority
1 = High LPB memory write access priority

Setting this bit may prevent tearing of the live video display.

SGRAM Control 1 Register (CR88)

Read/Write Address: 375H, Index 88H
Power-On Default: 00H

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>DR</td>
<td>MS</td>
<td>DBW</td>
<td>R</td>
<td>TOC</td>
<td>BPL</td>
<td>RCD</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 RCD - SGRAM TRCD Parameter
0 = 3 MCLKs
1 = 2 MCLKs

Bit 1 BPL - SGRAM TBPL Parameter
0 = 3 MCLKs
1 = 2 MCLKs

Bit 2 TOC - Timeout Counter
0 = Timeout count is in QWords
1 = Timeout count is in MCLKs
This bit applies to the timeout counters in CR71-CR7E.

Bit 3 Reserved

Bit 4 DBW - Disable Block Write (2D Engine Only)
0 = Block write enabled
1 = Block write disabled

Block write is used for solid rectangle fills. The drawing direction must be x and y positive (right to left, top to bottom) and the stride must be a multiple of 64.

Bit 5 MS - SGRAM Mode Set
This bit is programmed to 1 to generate a mode programming cycle. This bit is automatically cleared to 0 after the programming cycle.

Bit 6 DR - Disable SGRAM Refresh
0 = Refresh enabled
1 = Refresh disabled

Bit 7 Reserved
Primary Stream FIFO Fetch Control 1 Register (CR90)

Read/Write Address: 375H, Index 90H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL1</td>
<td>FP1</td>
<td>SFRD</td>
<td>FP2</td>
<td>L1 10-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 L1 10-8 - Primary Stream L1 Parameter (Bits 10-8)
These are bits 10-8 of the primary stream L1 parameter. See the description of the primary stream L1 parameter in the description for CR91.

Bit 3 FP1 - Flat Panel Output Control Bit 1
0 = Streams Processor off or full on (CR67_3-2 = 00 or 11) or 8bpp with Streams Processor (CR67_3-2 = 01)
1 = 15/16 or 32 bpp primary stream output with automatic centering and expansion (CR67_3-2 = 01)

Bit 6 of this register must also be set to 1 for this bit to be effective.

Bits 5-4 SFRD - Streams FIFO Reset Delay
00 = No delay
01 = 1 character clock delay
10 = 2 character clocks delay
11 = 3 character clocks delay

Bit 6 FP2 - Flat Panel Output Control Bit 2
0 = Streams Processor off or full on (CR67_3-2 = 00 or 11)
1 = Enable primary stream output with automatic centering and expansion (all color depths) (CR67_3-2 = 01)

Bit 7 EL1 - Enable L1 Parameter
0 = Primary stream display fetch length control (L1 parameter) disabled
1 = Primary stream display fetch length control (L1 parameter) enabled

Primary Stream FIFO Fetch Control 2 Register (CR91)

Read/Write Address: 375H, Index 91H
Power-On Default: 00H

These are the lower 8 bits of an 11-bit value used to optimize performance. The upper three bits are bits 2-0 of CR90.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 L1 7-0 - Primary Stream L1 Parameter (Bits 7-0)

11-bit Value = \([\text{number of bytes of displayed pixels per scan line}] \div 8\) - 1. This register contains the least significant 8 bits of this value.
Secondary Stream FIFO Fetch Control 1 Register (CR92)

Read/Write: Address: 3?5H, Index 92H
Power-On Default: 00H

When writing the L parameter bits in this register, ensure that bit 6 is not changed.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2</td>
<td>4B</td>
<td>R</td>
<td>L2 10-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0: L2 10-8 - Secondary Stream L2 Parameter (Bits 10-8)
These are bits 10-8 of the secondary stream L2 parameter. See the description of the primary stream L2 parameter in the description for CR93.

Bit 3: Reserved

Bit 4: LT – Savage4 LT Indicator (read only)(Rev. B)
0 = Savage4 LT chip
1 = Other Savage4 family chip

Bit 5: CA – CPU Base Address Overflow Bit (Rev. B)
Value = CPU base address bit 22
This bit is moved from CR58_3 for Rev. A

Bits 6-4B: 4 Bank Support
0 = Setting for CR68_7-6 = 01 with 1MX16 SDRAM
1 = Setting for CR68_7-6 = 01 with 16 MBytes of 2MX32 4-Bank SDRAM

Bit 7: EL2 - Enable S L2 Parameter
0 = Secondary stream display fetch length control (L2 parameter) disabled
1 = Secondary stream display fetch length control (L2 parameter) enabled

Secondary Stream FIFO Fetch Control 2 Register (CR93)

Read/Write: Address: 3?5H, Index 93H
Power-On Default: 00H

These are the lower 8 bits of an 11-bit value used to optimize performance. The upper three bits are bits 2-0 of CR92.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0: L2 7-0 - Secondary Stream L2 Parameter (Bits 7-0)
11-bit Value = [(number of bytes of displayed pixels per scan line) ÷ 8] - 1. This register contains the least significant 8 bits of this value.
Serial Port 1 Register (CRA0)

Read/Write Address: 375H, Index A0H
Power-On Default: 00H

Bits 4-0 of this register can also be accessed via MMFF20_4-0. This register is normally used for I2C communications.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>SPE</td>
<td>SDR</td>
<td>SCR</td>
<td>SDW</td>
<td>SCW</td>
</tr>
</tbody>
</table>

Bit 0 SCW - Serial Clock Write
0 = SPCLK1 is driven low
1 = SPCLK1 is tri-stated
SPCLK1 carries the I2C clock. When the SPCLK pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 2 of this register.

Bit 1 SDW - Serial Data Write
0 = SPD1 pin is driven low
1 = SPD1 pin is tri-stated
SPD1 carries the I2C data. When the SPD1 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 3 of this register.

Bit 2 SCR - Serial Clock Read (Read Only)
0 = SPCLK1 is low
1 = SPCLK1 is tri-stated (no device is driving this line)

Bit 3 SDR - Serial Data Read (Read Only)
0 = SPD1 pin is low
1 = SPD1 pin is tri-stated (no device is driving this line)

Bit 4 SPE - Serial Port 1 Enable
0 = Use of bits 1-0 of this register disabled
1 = Use of bits 1-0 of this register enabled

Bits 7-5 Reserved

Flash ROM Address 0 Register (CRA1)

Read/Write Address: 375H, Index A1H
Power-On Default: 00H

The ROM address is incremented by one for each access to the flash ROM data register (CRA4).

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASH ROM ADDRESS 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
FLASH ROM ADDRESS 7-0

20-bit Value = Address of byte to be accessed in flash ROM
Other bits are in CRA2 and CRA3.
Flash ROM Address 1 Register (CRA2)

- **Read/Write:** Address: 3?5H, Index A2H
- **Power-On Default:** 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLASH ROM ADDRESS 15-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bits 7-0:** FLASH ROM ADDRESS 15-8
- 20-bit Value = Address of byte to be accessed in flash ROM
- Other bits are in CRA1 and CRA3.

Flash ROM Address 2 Register (CRA3)

- **Read/Write:** Address: 3?5H, Index A3H
- **Power-On Default:** 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLASH ROM ADDRESS 19-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bits 3-0:** FLASH ROM ADDRESS 19-16
- 20-bit Value = Address of byte to be accessed in flash ROM
- Other bits are in CRA1 and CRA2.
- **Bits 7-4:** Reserved

Flash ROM Data Register (CRA4)

- **Read/Write:** Address: 3?5H, Index A4H
- **Power-On Default:** 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLASH ROM DATA 7-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bits 7-0:** FLASH ROM DATA 7-0
- Value = Data to be written to flash ROM

Extended BIOS Flag 6 Register (CRA5)

- **Read/Write:** Address: 3?5H, Index A5H
- **Power-On Default:** 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bits 7-0:** Reserved
Extended BIOS Flag 7 Register (CRA6)
Read/Write Address: 375H, Index A6H
Power-On Default: 00H
This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESERVED

Bits 7-0 Reserved

Extended BIOS Flag 8 Register (CRA7)
Read/Write Address: 375H, Index A7H
Power-On Default: 00H
This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESERVED

Bits 7-0 Reserved

Extended BIOS Flag 9 Register (CRA8)
Read/Write Address: 375H, Index A8H
Power-On Default: 00H
This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESERVED

Bits 7-0 Reserved

Extended BIOS Flag 10 Register (CRA9)
Read/Write Address: 375H, Index A9H
Power-On Default: 00H
This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESERVED

Bits 7-0 Reserved
Extended BIOS Flag 11 Register (CRAA)

Read/Write Address: 3F5H, Index AAH
Power-On Default: 00H

This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

Bits 7-0 Reserved

Extended BIOS Flag 12 Register (CRAB)

Read/Write Address: 3F5H, Index ABH
Power-On Default: 00H

This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

Bits 7-0 Reserved

Extended BIOS Flag 13 Register (CRAC)

Read/Write Address: 3F5H, Index ACH
Power-On Default: 00H

This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

Bits 7-0 Reserved

Extended BIOS Flag 14 Register (CRAD)

Read/Write Address: 3F5H, Index ADH
Power-On Default: 00H

This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

Bits 7-0 Reserved
Extended BIOS Flag 15 Register (CRAE)

Read/Write Address: 375H, Index AEH
Power-On Default: 00H

This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESERVED

Bits 7-0 Reserved

Extended BIOS Flag 16 Register (CRAF)

Read/Write Address: 375H, Index AFH
Power-On Default: 00H

This register is reserved for use by the BIOS.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESERVED

Bits 7-0 Reserved

Configuration 3 Register (CRB0)

Read/Write Address: 375H, Index B0H
Power-On Default: Depends on Strapping

If a pin is identified for a bit in this register, the state of that pin is latched at reset. These pins have internal pull-downs and their states are inverted before being latched, so these bits will default to 1 if the corresponding pin is not pulled up externally. If a pin is not associated with a bit, that bit always defaults to 1 at reset. Other configuration bits are found in CR36 and CR37. These bits can be accessed only after A5H is written to CR39.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>SCS</td>
<td>ST</td>
<td>ETV</td>
<td>FP</td>
<td>ET</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bit 0 Reserved
Bit 1 Reserved
Bit 2 ET - EPROM Type (ROMA7 pin)
0 = Serial SPI EEPROM
1 = Parallel EEPROM
Bit 3 FP - Flat Panel Capable (ROMA8 pin)
0 = Flat panel connection provided on board
1 = Flat panel connection not provided on board

Either a flat panel connection or TV encoder connection can be provided, but not both.

Bit 4 ETV - External TV Encoder Capable (ROMA9 pin)
0 = External TV encoder connection provided on board
1 = External TV encoder connection not provided on board

Either a flat panel connection or TV encoder connection can be provided, but not both.

Bit 5 ST - Savage4 Type (ROMA10 pin)
0 = Savage4 LT or Savage4 GT installed
1 = Savage4 Pro or Savage4 Pro-M installed
Bit 6 SCS - SCLK Source
0 = Use internal clock for PCI signals
1 = Use external clock input (PCI SCLK) for PCI signals

Bit 7 AMS - PCI Base Address Map Select (ROMA12 pin)
0 = Address map 1 (PCI10, 14, 18, 1C, 20, 24)
1 = Address map 0 (PCI10, 14)

Serial Port 2 Register (CRB1)
Read/Write Address: 3?5H, Index B1H
Power-On Default: 00H
This register is normally used for DDC monitor communications.

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>SPE</td>
<td>SDR</td>
<td>SCR</td>
<td>SDW</td>
<td>SCW</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 SCW - Serial Clock Write
0 = SPCLK2 is driven low
1 = SPCLK2 is tri-stated
When the SPCLK2 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 2 of this register.

Bit 1 SDW - Serial Data Write
0 = SPD2 pin is driven low
1 = SPD2 pin is tri-stated
When the SPD2 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 3 of this register.

Bit 2 SCR - Serial Clock Read (Read Only)
0 = SPCLK2 is low
1 = SPCLK2 is tri-stated (no device is driving this line)

Bit 3 SDR - Serial Data Read (Read Only)
0 = SPD2 pin is low
1 = SPD2 pin is tri-stated (no device is driving this line)

Bit 4 SPE - Serial Port 2 Enable
0 = Use of bits 1-0 of this register disabled
1 = Use of bits 1-0 of this register enabled
Bits 7-5 Reserved

Serial EEPROM Programming 1 Register (CRB2)
Read/Write Address: 3?5H, Index B2H
Power-On Default: 00H
This register applies to the first 32K of serial EEPROM.

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SERIAL EEPROM PROGRAMMING/STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 SERIAL EEPROM PROGRAMMING/STATUS
Programming these bits initiates a read or write cycle to the serial EEPROM. The content and protocol are a function of the specific EEPROM used.
Serial EEPROM Programming 2 Register (CRB3)

Read/Write Address: 375H, Index B2H
Power-On Default: 00H

This register applies to the first 32K of serial EEPROM.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>WLC</td>
</tr>
</tbody>
</table>

Bit 0 WLC
0 = Disable writing to serial EEPROM
1 = Enable writing to serial EEPROM

Bits 7-1 Reserved

Serial EEPROM Programming 3 Register (CRB4)

Read/Write Address: 375H, Index B4H
Power-On Default: 00H

This register applies to the second 32K of serial EEPROM.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL EEPROM PROGRAMMING/STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 SERIAL EEPROM PROGRAMMING/STATUS

Programming these bits initiates a read or write cycle to the serial EEPROM. The content and protocol are a function of the specific EEPROM used.

Serial EEPROM Programming 4 Register (CRB5)

Read/Write Address: 375H, Index B5H
Power-On Default: 00H

This register applies to the second 32K of serial EEPROM.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>WLC</td>
</tr>
</tbody>
</table>

Bit 0 WLC
0 = Disable writing to serial EEPROM
1 = Enable writing to serial EEPROM

Bits 7-1 Reserved
Compensation Code Register (CRB6) (Rev. B)

Write Only
Address: 375H, Index B6H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS COMP</td>
<td>PMOS COMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 PMOS COMP – Compensation Code for PMOS
Value = Compensation code to be used when SR39_5 = 1

Bits 7-4 NMOS COMP – Compensation Code for NMOS
Value = Compensation code to be used when SR39_5 = 1

AGP 2x Clock Control Register (CRB7) (Rev. B)

Read/Write
Address: 375H, Index B7H
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>AGP 2X CLOCK SKEW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 AGP 2X CLOCK SKEW
0000 = No skew
....
1111 = Maximum Skew

With bit 7 of this register cleared to 0, this should be initially set to the same value as the 1x clock control in SR1C_3-0. Then bit 7 of this register is set to 1 to enable 1x to 2x clock phase adjustment. This phase adjustment is then made by adjusting SR1C_3-0.

Bits 6-4 Reserved

Bit 7 CE – AGP 2X Clock Skew Control Enable
0 = Function of bits 3-0 of this register disabled
1 = Function of bits 3-0 of this register enabled
Section 6: PCI Register Descriptions

The PCI specification defines a configuration register space. These registers allow device relocation, device independent system address map construction and automatic configurations. The chip provides a subset of these registers, which are described below.

The configuration register space occupies 256 bytes. When a configuration read or write command is issued, the AD[7:0] lines contain the address of the register in this space to be accessed. The chip supports or returns 0 for the first 64 bytes of this space.

In the following register descriptions, ‘R’ stands for reserved (write = 0, read = undefined).

Vendor ID (PCI00)

Read Only Address: 00H
Power-On Default: 5333H

This read-only register identifies the device manufacturer.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor ID</td>
<td></td>
</tr>
</tbody>
</table>

Bits 15-0 Vendor ID
This is hardwired to 5333H to identify S3 Incorporated.

Device ID (PCI02)

Read Only Address: 02H
Power-On Default: See Below

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td></td>
</tr>
</tbody>
</table>

Bits 15-0 Device ID
Hardwired to 8A22H
PCI Registers

Command (PCI04)

See Bit Descriptions Address: 04H
Power-On Default: 0000H

This register controls which types of PCI cycles Savage4 can generate and respond to.

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DAC</td>
<td>SNP</td>
<td>0</td>
<td>0</td>
<td>BME</td>
<td>MEM</td>
</tr>
</tbody>
</table>
```

- **Bit 0** I/O - Enable Response to I/O Accesses (Read/Write)
 - 0 = Response to I/O space accesses is disabled
 - 1 = Response to I/O space accesses enabled

- **Bit 1** MEM - Enable Response to Memory Accesses (Read/Write)
 - 0 = Response to memory space accesses is disabled
 - 1 = Response to memory space accesses enabled

- **Bit 2** BME - Bus Master Operation Enable (Read/Write)
 - 0 = Bus master operation disabled
 - 1 = Bus master operation enabled

- **Bit 3** Hardwired to 0 to indicate Savage4 ignores Special Cycles

- **Bit 4** DAC SNP - RAMDAC Register Access Snooping (Read/Write)
 - 0 = Savage4 claims and responds to all RAMDAC register access cycles
 - 1 = Savage4 performs RAMDAC register writes but does not claim the PCI cycle.

- **Bit 5** Hardwired to 0 to indicate Savage4 does not detect parity errors

- **Bit 6** Hardwired to 0 to indicate Savage4 does not use address/data stepping

- **Bit 7** Hardwired to 0 to indicate Savage4 does not generate SERR

- **Bits 15-10** Reserved

Status (PCI06)

Read/Write Address: 06H
Power-On Default: 0230H

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>RMA</td>
<td>RTA</td>
<td>STA</td>
<td>DEVSEL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>66</td>
<td>CL</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>
```

- **Bits 3-0** Reserved

- **Bit 4** CL - Capabilities List (Read Only)
 - This bit is hardwired to 1 to indicate a capabilities list is implemented. PCI34_7-0 point to the first item in the capabilities list.

- **Bit 5** 66 - 66 MHz Support (Read Only)
 - This bit is hardwired to 1 to indicate support for 66 MHz operation

- **Bit 6** Hardwired to 0 to indicate Savage4 does not support User Definable Features

- **Bit 7** Hardwired to 0 to indicate Savage4 does not accept fast back-to-back transactions

- **Bit 8** Hardwired to 0 to indicate Savage4 does not detect parity errors

- **Bits 10-9** DEVSEL - Device Select Timing (Read Only)
 - 01 = Medium DEVSEL timing. (hardwired)
Bit 11 STA - Signaled Target Abort
 0 = No effect
 1 = PCI slave transaction terminated with target-abort
 This bit is reset by software by writing a 1 to this location.

Bit 12 RTA - Received Target Abort
 0 = No effect
 1 = Bus master transaction terminated with target-abort
 This bit is reset by software by writing a 1 to this location.

Bit 13 RMA - Received Master Abort
 0 = No effect
 1 = Bus master transaction terminated with master-abort
 This bit is reset by software by writing a 1 to this location.

Bit 14 Hardwired to 0 to indicate Savage4 does not assert SERR

Bit 15 Hardwired to 0 to indicate Savage4 does not check parity

Class Code (PCI08)

Read Only Address: 08H
Power-On Default: 0300000xxH

This register is hardwired to 0300000xxH to specify Savage4 is a VGA-compatible display controller. The xx will change with each revision.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| | | | | | | | | | | | | | | | |

PROGRAMMING INTERFACE REVISION ID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BASE CLASS CODE SUB-CLASS

Cache Line Size (PCI0C)

Read/Write Address: 0CH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CACHE LINE SIZE

Bits 7-0 Hardwired to 00H because Savage4 does not initiate Master Write and Invalidate commands

Latency Timer (PCI0D)

Read/Write Address: 0DH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BM LATENCY TIMER 0 0 0

Bits 2-0 Reserved = 0

These are the 3 LSB’s of the latency timer value, providing 8 clocks granularity.

Bits 7-3 BM LATENCY TIMER - Bus Master Latency Timer

Value = number of PCI clocks the Savage4 can keep its bus master grant without having it removed

These are the 5 MSBs of this value. The three LSBs are 000b. This value is normally programmed by the system BIOS based in part on the requested value in bits 15-8 of 3EH.

Header Type (PCI0E)

Read/Write Address: 0EH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Bits 7-0 Reserved

BIST (PCI0F)

Read/Write Address: 0FH
Power-On Default: 00H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 Hardwired to 00H because Savage4 does not support BIST

Base Address 0 (PCI10) (Mapping 0 or 1) (Rev. A)

Read/Write Address: 00H 8010H PCI Index: 12H (high) 10H (low)
Power-On Default: 7000 0000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
0 = Does not meet the prefetchable requirements (hardwired)
Bits 31-4 BASE ADDRESS 0

Value = Base address for accessing Savage4 registers via memory-mapped I/O

This field provides for address relocation. The programmable bits map to system address bits 31-24. All other
address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for MMIO register
accesses.

Setting all bits to 0s disables this base address register.

Base Address 0 (PCI10) (Mapping 0 or 1) (Rev. B)

Read/Write Address: 000 8010H
Power-On Default: 7000 0000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

BASE ADDRESS 0

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
0 = Does not meet the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 0

Value = Base address for accessing Savage4 registers via memory-mapped I/O

This field provides for address relocation. The programmable bits map to system address bits 31-19. All other
address bits (18-4) return 0 on read to specify that Savage4 requires a 512K address space for MMIO register
accesses.

Setting all bits to 0s disables this base address register.

Base Address 1 (PCI14) (Mapping 0, CRB0_7 = 1) (Rev. A and B)

Read/Write Address: 000 8014H
Power-On Default: 6000 0008H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

BASE ADDRESS 1

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
1 = Meets the prefetchable requirements (hardwired)
Bits 31-4 BASE ADDRESS 1

Value = Base address for linear access of the Savage4 frame buffer, tiled addressing apertures and BCI command data transfers

This field provides for address relocation. The programmable bits map to system address bits 31-27. All other address bits (26-4) return 0 on read to specify that Savage4 requires a 128-MByte address space for linear addressing, tiled addressing apertures and BCI command data. Note that writes to CR59_7-3 will also update this field, so if the linear addressing base address is being changed (testing only), the programmer must do a read-modify-write to ensure that this field is not changed.

Setting all bits to 0s disables this base address register.

Base Address 1 (PCI14) (Mapping 1, CRB0_7 = 0) (Rev. A)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

PREF = 1 TYPE =00 MSI = 0

BASE ADDRESS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 1

Value = Base address for linear access of the first 16 MBytes of the Savage4 frame buffer

This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for the lower 16 MBytes of linear addressing. Note that writes to CR59_7-0 will also update this field, so if the linear addressing base address is being changed (old linear addressing only, it should never be changed with new linear addressing), the programmer must do a read-modify-write to ensure that this field is not changed.

Setting all bits to 0s disables this base address register.

Base Address 1 (PCI14) (Mapping 1, CRB0_7 = 0) (Rev. B)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

PREF = 1 TYPE =00 MSI = 0

BASE ADDRESS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)
Savage4

PCI Registers

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 1

Value = Base address for linear access of the of the Savage4 frame buffer

This field provides for address relocation. The programmable bits map to system address bits 31-25. All other
address bits (24-4) return 0 on read to specify that Savage4 requires a 32-MByte address space for linear
addressing. Note that writes to CR59_7-1 will also update this field, so if the linear addressing base address is being
changed (old linear addressing only, it should never be changed with new linear addressing), the programmer must
do a read-modify-write to ensure that this field is not changed.

Setting all bits to 0s disables this base address register.

Base Address 2 (PCI18) (Mapping 1, CRB0_7 = 0) (Rev. A)

Read/Write Address: 000 8018H PCI Index: 1AH (high) 18H (low)
Power-On Default: 6800 0008H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

BASE ADDRESS 2

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 2

Value = Base address for linear access of the second 16 MBytes of the Savage4 frame buffer

This field provides for address relocation. The programmable bits map to system address bits 31-24. All other
address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for the upper 16
MBytes of linear addressing.

Setting all bits to 0s disables this base address register.

Base Address 2 (PCI18) (Mapping 1, CRB0_7 = 0) (Rev. B)

Read/Write Address: 000 8018H PCI Index: 1AH (high) 18H (low)
Power-On Default: 6800 0008H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

BASE ADDRESS 2

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)
Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 2
Value = Base address for tiled address aperture 0

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 0.

Setting all bits to 0s disables this base address register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>MSI</th>
<th>TYPE</th>
<th>PREF</th>
<th>BASE ADDRESS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27 26 25 24 23 22 21 20 19 18 17 16</td>
</tr>
</tbody>
</table>

Setting all bits to 0s disables this base address register.

Base Address 3 (PCI1C) (Mapping 1, CRB0_7 = 0) (Rev A)

Read/Write
Address: 000 801CH
PCI Index: 1EH (high) 1CH (low)
Power-On Default: 6200 0008H

Table 1: Base Address 3 (PCI1C) (Mapping 1, CRB0_7 = 0) (Rev A)

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 3
Value = Base address for tiled address aperture 0

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 0.

Setting all bits to 0s disables this base address register.

Base Address 3 (PCI1C) (Mapping 1, CRB0_7 = 0) (Rev B)

Read/Write
Address: 000 801CH
PCI Index: 1EH (high) 1CH (low)
Power-On Default: 6200 0008H

Table 2: Base Address 3 (PCI1C) (Mapping 1, CRB0_7 = 0) (Rev B)

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)
Bit 3 PREF - Prefetchable
 1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 3

Value = Base address for tiled address aperture 1

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 1.

Setting all bits to 0s disables this base address register.

Base Address 4 (PCI20) (Mapping 1, CRB0_7 = 0) (Rev. A)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bit 0 MSI - Memory Space Indicator
 0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
 00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
 1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 4

Value = Base address for tiled address aperture 1

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 1.

Setting all bits to 0s disables this base address register.

Base Address 4 (PCI20) (Mapping 1, CRB0_7 = 0) (Rev. B)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bit 0 MSI - Memory Space Indicator
 0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
 00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
 1 = Meets the prefetchable requirements (hardwired)
Bits 31-4 BASE ADDRESS 4

Value = Base address for tiled address aperture 2

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for the address aperture 2.

Setting all bits to 0s disables this base address register.

<table>
<thead>
<tr>
<th>Base Address 5 (PCI24) (Mapping 1, CRB0_7 = 0) (Rev. A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read/Write Address: 000 8024H PCI Index: 26H (high) 24H (low)</td>
</tr>
<tr>
<td>Power-On Default: 6400 0008H</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>BASE ADDRESS 5</td>
</tr>
</tbody>
</table>

Bit 0 MSI - Memory Space Indicator
0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation
00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable
1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 5

Value = Base address for tiled address aperture 2

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for the address aperture 2.

Setting all bits to 0s disables this base address register.

<table>
<thead>
<tr>
<th>Base Address 5 (PCI24) (Mapping 1, CRB0_7 = 0) (Rev. B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read/Write Address: 000 8024H PCI Index: 26H (high) 24H (low)</td>
</tr>
<tr>
<td>Power-On Default: 6400 0008H</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>BASE ADDRESS 5</td>
</tr>
</tbody>
</table>
PCI Registers

Bits 31-4 BASE ADDRESS 5

Value = Base address for tiled address aperture 3

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for the address aperture 3.

Setting all bits to 0s disables this base address register.

PCI Configuration Space Subsystem ID (PCI2C)

Read Only Address: 2CH
Power-On Default: 00000000H

This register is a shadow of CR81-CR84.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

SUBSYSTEM VENDOR ID

SUBSYSTEM ID

Bits 15-0 SUBSYSTEM VENDOR ID
Bits 31-16 SUBSYSTEM ID

BIOS ROM Base Address (PCI30)

Read/Write Address: 32H (high) 30H (low)
Power-On Default: 000C 0000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>ADE</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

BIOS ROM BASE ADDRESS

Bit 0 ADE - Address Decode Enable
 0 = Accesses to the BIOS ROM address space defined in this register are disabled
 1 = Accesses to the BIOS ROM address space defined in this register are enabled

Bits 15-1 Reserved
Bits 31-16 BIOS ROM BASE ADDRESS

These are the upper 16 bits of the BIOS ROM address.

Capabilities List Pointer (PCI34)

Read/Write Address: 34H
Power-On Default: DCH

This register value points to the offset of the first item in the capabilities list.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

CAPABILITIES LIST POINTER

Bits 7-0 CAPABILITIES LIST POINTER

This field is hardwired to DCH to point to the PCI power management capabilities list.
Interrupt Line (PCI3C)

Read/Write Address: 3CH
Power-On Default: 00H

This register contains interrupt line routing information written by the POST program during power-on initialization.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTERRUPT LINE</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 INTERRUPT LINE

Interrupt Pin (PCI3D)

Read Only Address: 3DH
Power-On Default: See below.

This register normally reads 01H to specify that INTA is the interrupt pin used. If CR36_0 = 0, this register will read 00H to indicate that no interrupt should be assigned to this device.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTERRUPT PIN</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 INTERRUPT PIN

Latency/Grant (PCI3E)

Read Only Address: 3EH
Power-On Default: FF40H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAXIMUM LATENCY</td>
<td>MINIMUM GRANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 MINIMUM GRANT
Value = Length of burst period required in units of 250 ns (33 MHz clock)

Bits 15-8 MAXIMUM LATENCY
Value = Maximum latency of PCI access in units of 250 ns (33 MHz clock)

Master Timeout Control (PCI40)

Read Write Address: 40H
Power-On Default: 03H

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>MASTER TIMEOUT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 MASTER TIMEOUT
Value = # of PCI cycles the Savage4 master will wait for DEVSEL to be asserted before timing out

Bits 7-4 Reserved
AGP Capability Identifier (PCI80)

Read/Write Address: 80H (AGP offset + 00H)
Power-On Default: 00200002H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

NEXT POINTER CAPABILITIES ID

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>MAJOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MINOR</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 CAPABILITIES ID

Hardwired to 02H to identify the capabilities list as pertaining to AGP.

Bits 15-8 NEXT POINTER

Hardwired to 00H.

Bits 19-16 MINOR

Hardwired to 0H to specify the minor revision level of the AGP interface specification to which this device conforms.

Bits 23-20 MAJOR

Hardwired to 2H to specify the major revision level of the AGP interface specification to which this device conforms.

Bits 31-24 Reserved

AGP Status (PCI84)

Read Only Address: 84H (AGP offset + 04H)
Power-On Default: 1F000x0xH

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

REQUESTS SUPPORTED

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 RATE

This field indicates 1x, 2x and 4x clocking are supported. This applies to the AD and SBA busses. Bits 1-0 are hardwired to 11b. Bit 2 reflects the state of CRB0_5. It will read 1 if 4x clocking is supported.

Bits 8-3 Reserved

Bit 9 SBA - Side Band Addressing
0 = Side band addressing not supported
1 = Side band addressing supported

The status of this bit is determined by the setting of CR70_7.

Bits 23-10 Reserved

Bits 31-24 REQUESTS SUPPORTED

Hardwired to 1FH to indicate the maximum # of AGP command requests this device can manage.
AGP Command (PCI88)

Read/Write
Address: 88H (AGP offset + 08H)
Power-On Default: 00000000H

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>SE</td>
<td>AE</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>DATA RATE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 DATA RATE
001 = 1x clocking desired
010 = 2x clocking desired
100 = 4x clocking desired

This field must be programmed to one of these three values. The master and target must be programmed for the same rate. 4x clocking can be selected only if PCI84_2 = 1.

Bits 7-3 Reserved

Bit 8 AE - AGP Enable
0 = Master cannot initiate AGP operations
1 = Master can initiate AGP operations

The target must be enabled before the master. This bit is cleared by an AGP reset.

Bit 9 SE - SBA Enable
0 = Side band addressing disabled
1 = Side band addressing enabled

This bit can be set to 1 only if PCI84_9 = 1.

Bits 23-10 Reserved

Bits 31-24 REQUEST DEPTH
Value = Maximum # of pipelined operations the master is allowed to enqueue to the target

This value must be equal to or less than the value reported in the REQUESTS SUPPORTED field (AGP offset 4H_31-24) of the target.

AGP FIFO Status (PCI8C)

Read Only
Address: 8CH (AGP offset + 0CH)
Power-On Default: 00000000H

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>AB</td>
<td>OFF</td>
<td>OFF</td>
<td>DBF</td>
<td>DBE</td>
<td>RF</td>
<td>RE</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>CURRENT COMMAND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bits 5-0 CURRENT COMMAND
Value = Current number of outstanding command in system side

Bits 7-6 Reserved

Bit 8 RE - Requester Empty Status
0 = AGP requester is empty
1 = AGP requester is not empty

Bit 9 RF - Requester Full Status
0 = AGP requester is not full
1 = AGP requester is full
Bit 10 DBE - Data Buffer Empty Status
0 = AGP data buffer is empty
1 = AGP data buffer is not empty

Bit 11 DBF - Data Buffer Full Status
0 = AGP data buffer is not full
1 = AGP data buffer is full

Bit 12 OFE - Outstanding FIFO Empty Status
0 = Outstanding FIFO is empty
1 = Outstanding FIFO is not empty

Bit 13 OFF - Outstanding FIFO Full Status
0 = Outstanding FIFO is not full
1 = Outstanding FIFO is full

Bit 14 AB - AGP Master Busy
0 = AGP master idle
1 = AGP master busy

Bits 31-15 Reserved

PCI Power Management Capability Identifier (PCIDC)

Read Only
Address: DCH (PM offset + 00H)
Power-On Default: 0001H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT POINTER</td>
<td>CAPABILITIES ID</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0 CAPABILITIES ID
Hardwired to 01H to identify the capabilities list as pertaining to PCI power management.

Bits 15-8 NEXT POINTER
Hardwired to 80H to point to the AGP capabilities.

PCI Power Management Capabilities (PCIDE)

Read Only
Address: DEH (PM offset + 02H)
Power-On Default: 0621H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>D2</td>
<td>D1</td>
<td>R</td>
<td>R</td>
<td>DSI</td>
<td>R</td>
<td>R</td>
<td>VERSION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 VERSION
Hardwired to 1H to indicate compliance with Revision 1.0 of the PCI Power Management Specification.

Bits 4-3 Reserved
Bit 5 DSI - Device Specific Initialization
Hardwired to 1 to indicate a device specific initialization sequence is required following transition to the D0 uninitialized state.

Bits 8-6 Reserved
Bit 9 D1
Hardwired to 1 to indicated support for the D1 power management state.

Bit 10 D2
Hardwired to 1 to indicated support for the D2 power management state.
PCI Registers

Bits 15-11 Reserved

PCI Power Management Control/Status (PCIE0)

Read/Write Address: E0H (PM offset + 04H
Power-On Default: 0000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>PS</td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 PS - Power State
00 = D0
01 = D1
10 = D2
11 = D3hot

The D2 state can only be enabled if CR42_0 = 1.

Bits 15-2 Reserved
Section 7: 2D Graphics Engine Register Descriptions

These registers support the Enhanced mode 2D drawing commands.

In the following register descriptions, ‘R’ stands for reserved (write = 0, read = undefined).

These registers can be accessed five different ways:

<table>
<thead>
<tr>
<th>Access Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old MMIO</td>
<td>Non-packed format. Accessed at Axxxx, where xxxx is the old I/O address (e.g. 9AE8H) each register.</td>
</tr>
<tr>
<td>Old MMIO</td>
<td>Packed format starting at offset A8100.</td>
</tr>
<tr>
<td>New MMIO</td>
<td>Non-packed format compatible with old MMIO. Offset is 200 xxxx. The new MMIO offset is given in parentheses for each register.</td>
</tr>
<tr>
<td>New MMIO</td>
<td>Packed format starting at offset 200 8100. This is the preferred method for direct access.</td>
</tr>
<tr>
<td>BCI</td>
<td>Index defined for each register. This should normally be used by the drivers for all writes. Several registers do not have BCI indices and must be accessed directly.</td>
</tr>
</tbody>
</table>

The first two methods provide backwards compatibility for some drivers. The last two methods are more efficient and should be used by all new software. The registers are listed below in their original configurations and order, i.e., non-packed and by increasing old MMIO (AxxE8H) address. The MMxxxx designation will be out of order. Table 7-1 provides the correspondence between the various methods.

Only 16-bit reads of these registers are supported. 32-bit reads will return invalid data in the upper word. All the 16-bit registers will read correctly at their MMxxxx address. The 32-bit registers will require reads at the MMxxxx address and 2 bytes higher.
Table 7-1. 2D Graphics Engine Registers Memory Mapping

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Old MMIO Address</th>
<th>Packed Old MMIO Address (Axxxxx) or Packed New MMIO Address (000 xxxx)</th>
<th>BCI Address (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsystem Status/Control</td>
<td>42E8</td>
<td>8504</td>
<td>N/A</td>
</tr>
<tr>
<td>FIFO Status</td>
<td>42EA</td>
<td>8508</td>
<td>N/A</td>
</tr>
<tr>
<td>Advanced Function Control</td>
<td>4AE8</td>
<td>850C</td>
<td>N/A</td>
</tr>
<tr>
<td>Wakeup</td>
<td></td>
<td>8510</td>
<td>N/A</td>
</tr>
<tr>
<td>Current Y, Current X</td>
<td>82E8, 86E8</td>
<td>8100, 8102</td>
<td>D0 (2x16-bit)</td>
</tr>
<tr>
<td>Destination Y, Destination X</td>
<td>8AE8, 8EE8</td>
<td>8108, 810A</td>
<td>D1 (2x16-bit)</td>
</tr>
<tr>
<td>Line Error Term</td>
<td>92E8</td>
<td>8110</td>
<td>D2 (16-bit)</td>
</tr>
<tr>
<td>Command</td>
<td>9AE8</td>
<td>8118</td>
<td>D3 (16-bit)</td>
</tr>
<tr>
<td>Short Stroke Vector</td>
<td>9EE8</td>
<td>811C</td>
<td>D4 (16-bit)</td>
</tr>
<tr>
<td>Background Color</td>
<td>A2E8</td>
<td>8120</td>
<td>D6 (32-bit)</td>
</tr>
<tr>
<td>Foreground Color</td>
<td>A6E8</td>
<td>8124</td>
<td>D6 (32-bit)</td>
</tr>
<tr>
<td>Write Mask</td>
<td>AAE8</td>
<td>8128</td>
<td>D7 (32-bit)</td>
</tr>
<tr>
<td>Read Mask</td>
<td>AEE8</td>
<td>812C</td>
<td>D8 (32-bit)</td>
</tr>
<tr>
<td>Color Compare</td>
<td>B2E8</td>
<td>8130</td>
<td>D9 (32-bit)</td>
</tr>
<tr>
<td>Background Mix, Foreground Mix</td>
<td>B6E8, BAE8</td>
<td>8134, 8136</td>
<td>DA (2x16-bit)</td>
</tr>
<tr>
<td>Top Scissors, Left Scissors</td>
<td>BEE8_1, BEE8_2</td>
<td>8138, 813A</td>
<td>DB (2x16-bit)</td>
</tr>
<tr>
<td>Bottom Scissors, Right Scissors</td>
<td>BEE8_3, BEE8_4</td>
<td>813C, 813E</td>
<td>DD (2x16-bit)</td>
</tr>
<tr>
<td>Pixel Control, Multi. Misc. 2</td>
<td>BEE8_A, BEE8_D</td>
<td>8140, 8142</td>
<td>DD (2x16-bit)</td>
</tr>
<tr>
<td>Multi. Misc., Read Select</td>
<td>BEE8_E, BEE8_F</td>
<td>8144, 8146</td>
<td>DE (2x16-bit)</td>
</tr>
<tr>
<td>Minor Axis Count, Major Axis Count</td>
<td>BEE8_0, 96E8</td>
<td>8148, 814A</td>
<td>DF (2x16-bit)</td>
</tr>
<tr>
<td>Pixel Transfer</td>
<td>E2E8, E2EA</td>
<td>Range</td>
<td>N/A</td>
</tr>
<tr>
<td>Global Bitmap Descriptor 1</td>
<td>EAEE, EAEE</td>
<td>8168, 816A</td>
<td>E0 (32-bit)</td>
</tr>
<tr>
<td>Global Bitmap Descriptor 2</td>
<td>EEE8, EEEA</td>
<td>816C, 816E</td>
<td>E1 (32-bit)</td>
</tr>
<tr>
<td>Primary Bitmap Descriptor 1</td>
<td>F2E8, F2EA</td>
<td>8170, 8172</td>
<td>E2 (32-bit)</td>
</tr>
<tr>
<td>Primary Bitmap Descriptor 2</td>
<td>F6E8, F6EA</td>
<td>8174, 8176</td>
<td>E3 (32-bit)</td>
</tr>
<tr>
<td>Secondary Bitmap Descriptor 1</td>
<td>FAE8, F8EA</td>
<td>8178, 817A</td>
<td>E4 (32-bit)</td>
</tr>
<tr>
<td>Secondary Bitmap Descriptor 2</td>
<td>FEEE8, F8EA</td>
<td>817C, 817E</td>
<td>E5 (32-bit)</td>
</tr>
</tbody>
</table>
Subsystem Status Register (MM8504)

Read Only

Address: 42E8H (8504H)

Power-On Default: 0000H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
</table>
| 0 | VSY INT - Vertical Sync Interrupt Status | 0 = No interrupt
 | | 1 = Interrupt generated if enabled |
| 1 | GE BSY - 2D Graphics Engine Busy Interrupt Status| 0 = No interrupt
 | | 1 = Interrupt generated if enabled |
| 2 | BFF - BFIFO Full Interrupt Status | 0 = No interrupt
 | | 1 = Interrupt generated if enabled |
| 3 | BFE - BFIFO Empty Interrupt Status | 0 = No interrupt
 | | 1 = Interrupt generated if enabled |
| 4 | CFF - CFIFO Full Interrupt Status | 0 = No interrupt
 | | 1 = Interrupt generated if enabled |
| 5 | CFE - CFIFO Empty Interrupt Status | 0 = No interrupt
 | | 1 = Interrupt generated if enabled |
| 6 | BCI - BCI Interrupt Status | 0 = No Interrupt
 | | 1 = Interrupt generated if enabled |
| 7 | LPB - LPB Interrupt Status | 0 = No Interrupt
 | | 1 = Interrupt generated if enabled |
| 8-15 | Reserved | |
| 16 | CB UT - Command Overflow Buffer Upper Threshold Interrupt Status | 0 = No Interrupt
 | | 1 = Interrupt generated if enabled |
| 17 | CB LT - Command Overflow Buffer Lower Threshold Interrupt Status | 0 = No Interrupt
 | | 1 = Interrupt generated if enabled |
| 18-31 | Reserved | |

Bits 15-8 Reserved

Bits 16-15 Reserved

Bits 14-13 Reserved

Bits 12-11 Reserved

Bits 10-9 Reserved

Bits 8-7 Reserved

Bits 6-5 Reserved

Bits 4-3 Reserved

Bits 2-1 Reserved

Bit 0 Reserved
Subsystem Control Register (MM8504)

Write Only
Address: 42E8H (8504H)
Power-On Default: 0000H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Setting</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VSY CLR - Clear Vertical Sync Interrupt Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>1</td>
<td>GEB CLR - Clear 2D/3D Graphics Engine Busy Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>2</td>
<td>BFF CLR - Clear BFIFO Full Interrupt Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>3</td>
<td>BFE CLR - Clear BFIFO Empty Interrupt Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>4</td>
<td>CFO CLR - Clear CFIFO Full Interrupt Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>5</td>
<td>CFE CLR - Clear CFIFO Empty Interrupt Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>6</td>
<td>BCI CLR - Clear BCI Interrupt Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>7</td>
<td>LPB CLR - Clear LPB Interrupt Status</td>
<td>0</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>8</td>
<td>VSY ENB - Vertical Sync Interrupt Enable</td>
<td>0</td>
<td>1</td>
<td>Enable if CR32_4 = 1</td>
</tr>
<tr>
<td>9</td>
<td>GE BSY - 2D/3D Graphics Engine Busy Interrupt Enable</td>
<td>0</td>
<td>1</td>
<td>Enable if CR32_4 = 1</td>
</tr>
<tr>
<td>10</td>
<td>BFF ENB - BIU FIFO Full Interrupt Enable</td>
<td>0</td>
<td>1</td>
<td>Enable if CR32_4 = 1</td>
</tr>
<tr>
<td>11</td>
<td>BFE ENB - BIU FIFO Empty Interrupt Enable</td>
<td>0</td>
<td>1</td>
<td>Enable if CR32_4 = 1</td>
</tr>
<tr>
<td>12</td>
<td>CFF ENB - Command FIFO Full Interrupt Enable</td>
<td>0</td>
<td>1</td>
<td>Enable if CR32_4 = 1</td>
</tr>
<tr>
<td>13</td>
<td>CFE ENB - Command FIFO Empty Interrupt Enable</td>
<td>0</td>
<td>1</td>
<td>Enable if CR32_4 = 1</td>
</tr>
</tbody>
</table>
Bit 14 BCI ENB - BCI Interrupt Enable
 0 = Disable
 1 = Enable if CR32_4 = 1

Bit 15 GE SR - 2D Graphics Engine Software Reset
 0 = No effect
 1 = Software reset (ORed with CR66_1)

Bit 16 UT CLR - Clear Command Overflow Buffer Upper Threshold Interrupt
 0 = No change
 1 = Clear

Bit 17 LT CLR - Clear Command Overflow Buffer Lower Threshold Interrupt
 0 = No change
 1 = Clear

Bits 23-18 Reserved

Bit 24 UT ENB - Command Overflow Buffer Upper Threshold Interrupt Enable
 0 = Disable
 1 = Enable if CR32-4 = 1

The upper threshold is defined in MM48C10_15-0.

Bit 25 LT ENB - Command Overflow Buffer Lower Threshold Interrupt Enable
 0 = Disable
 1 = Enable if CR32-4 = 1

The lower threshold is defined in MM48C10_31-16.

Bits 31-26 Reserved

FIFO Status Register (MM8508)

<table>
<thead>
<tr>
<th>Address: 42EAH (8508H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-On Default: 0000H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>CFE</td>
<td>OBF</td>
<td>RBF</td>
<td>WBF</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>CFE</td>
<td>OBE</td>
<td>RBE</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 WBE - Command Write Buffer (on chip) Empty Status
 0 = Not empty
 1 = Empty

Bit 1 RBE - Command Read Buffer (on chip) Empty Status
 0 = Not empty
 1 = Empty

Bit 2 OBE - Command Overflow Buffer (frame buffer) Empty Status
 0 = Not empty
 1 = Empty

Bit 3 CFE - Command FIFO (CFIFO) Empty Status
 0 = Not empty
 1 = Empty

Bits 7-4 Reserved

Bit 8 WBF - Command Write Buffer (on chip) Full Status
 0 = Not full
 1 = Full
2D Graphics Engine Registers

Bit 9
RBF - Command Read Buffer (on chip) Full Status
- 0 = Not full
- 1 = Full

Bit 10
OBF - Command Overflow Buffer (frame buffer) Full Status
- 0 = Not Full
- 1 = Full

Bit 11
CFF - Command FIFO (CFIFO) Full Status
- 0 = Not full
- 1 = Full

Bits 31-12
Reserved

Advanced Function Control Register (MM850C)

Read/Write Address: 4AE8H (850CH)
Power-On Default: 0000H

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>GC</td>
<td>GEC</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>LA</td>
<td>R</td>
<td>PL</td>
<td>R</td>
<td>E23</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bit 0
E23 - Enable 2D/3D Engine Operation
- 0 = Disable 2D/3D Engine operation (VGA operation)
- 1 = Enable 2D/3D Engine operation

This bit must only be programmed during screen off (SR1_5 = 1) or during the vertical retrace period. Setting SR1_5 to 1 may take up to 3 HSYNCs to take effect. This bit has the same function as CR66_0. Programming one of these bits also changes affects the other bit.

Bit 1
Reserved

Bit 2
PL - Enhanced Mode Pixel Length
- 0 = 4 bits/pixel enhanced mode
- 1 = 8 or more bits/pixel enhanced mode

CR50_5-4 are used to differentiate between 8-, 16- and 32-bit pixel lengths.

Bit 3
Reserved

Bit 4
LA - Enable Linear Addressing
- 0 = Disable linear addressing
- 1 = Enable linear addressing

This bit is ORed with bit 4 of CR58 and is equivalent to it.

Bits 7-5
Reserved

Bits 9-8
GEC - 2D Graphics Engine Clock Divide
- 00 = MCLK/2
- 01 = MCLK/4
- 10 = MCLK
- 11 = MCLK

Bits 15-10
Reserved

Bit 16
IC - Internal Clock Select
- 0 = Internal clock is 66 MHz except for the system bus interface and LPB functions
- 1 = Internal clock is 33 MHz

Bits 31-17
Reserved
Wakeup Register (MM8510)

Read/Write Address: 8510H
Power-On Default: 000C 0000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>WU</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 WU - Wake Up
0 = Chip function disabled
1 = Chip function enabled
This bit is ORed with 3C3H_0.

Current Y-Position Register (MM8100)

Read/Write Address: 82E8H (8100H) BOI: D0H (lower word)
Power-On Default: Undefined

For line draws (solid, textured, short stroke or polyline), rectangle draws and image transfers, writing to this register defines the vertical screen coordinate at which the first pixel will be drawn. For BitBLTs, this is the vertical coordinate for the upper left hand corner of the source. For PatBLTs, this is the vertical coordinate of the upper left hand corner of the off-screen pattern. Reading this register produces the current vertical drawing coordinate.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 CURRENT Y-POSITION
Bits 15-12 Reserved
Current X-Position Register (MM8102)

Read/Write Address: 86E8H (8102H) BCI: D0H (upper word)
Power-On Default: Undefined

For line draws (solid, textured, short stroke or polyline), rectangle draws and image transfers, writing to this register defines the horizontal screen coordinate at which the first pixel will be drawn. For BitBLTs, this is the horizontal coordinate for the upper left hand corner of the source. For PatBLTs, this is the horizontal coordinate of the upper left hand corner of the off-screen pattern. Reading this register produces the current horizontal drawing coordinate.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 CURRENT X-POSITION
Bits 15-12 Reserved

Destination Y-Position/Axial Step Constant Register (MM8108)

Read/Write Address: 8AE8H (8108H) BCI: D1H (lower word)
Power-On Default: Undefined

For BitBLTs and PatBLTs, this register defines the vertical position for the top of the destination rectangle. For solid and textured line draws, this is axial step constant used in the definition of the line.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 DESTINATION Y-POSITION
Bits 15-12 Reserved

Axial Step Constant = 2 * (min(|dx|,|dy|)) In other words, when drawing a line from point A to point B, determine the change in the X coordinate from A to B and the change in the Y coordinate from A to B. Take the smaller of the two changes and multiply its absolute value by 2.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 13-0 LINE PARAMETER AXIAL STEP CONSTANT
Bits 15-14 Reserved
Destination X-Position/Diagonal Step Constant Register (MM810A)

Read/Write

Address: 8EE8H (810AH)

Power-On Default: Undefined

BCI: D1H (upper word)

For BitBLTs and PatBLTs, this register defines the horizontal position for the left side of the destination rectangle. For solid and textured line draws, this is diagonal step constant used in the definition of the line.

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>DESTINATION X-POSITION</td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 DESTINATION X-POSITION

Bits 15-12 Reserved

Line Parameter/Diagonal Step Constant

Diagonal Step Constant = $2 \cdot \min(|dx|,|dy|) - \max(|dx|,|dy|)$. See the Destination Y-Position/Axial Step Constant (MM8108) register for an explanation of the terms used in this equation.

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>LINE PARAMETER/DIAGONAL STEP CONSTANT</td>
<td></td>
</tr>
</tbody>
</table>

Bits 13-0 LINE PARAMETER/DIAGONAL STEP CONSTANT

Bits 15-14 Reserved

Line Error Term Register (MM8110)

Read/Write

Address: 92E8H (8110H)

Power-On Default: Undefined

BCI: D2H (lower word only)

This register specifies the initial error term for solid and textured line draws.

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>LINE PARAMETER/ERROR TERM</td>
<td></td>
</tr>
</tbody>
</table>

Error Term = $2 \cdot \min(|dx|,|dy|) - \max(|dx|,|dy|) - 1$ if the starting X < the ending X

Error Term = $2 \cdot \min(|dx|,|dy|) - \max(|dx|,|dy|) + 1$ if the starting X ≥ the ending X

See the Destination Y-Position/Axial Step Constant (MM8108) register for an explanation of the terms used in these equations.

Bits 13-0 LINE PARAMETER/ERROR TERM

Bits 15-14 Reserved
Drawing Command Register (MM8118)

Write Only
Address: 9AE8H (8118H)
Power-On Default: Undefined

This register specifies the drawing command and a number of associated control parameters. MM8144_9 must be set to 1 to access the upper 16 bits of this register.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD-TYPE</td>
<td>BS</td>
<td>R</td>
<td>BUS SIZE</td>
<td>WY</td>
<td>DRWG-DIR</td>
<td>DS</td>
<td>DT</td>
<td>LP</td>
<td>PM = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>DESTBD</td>
<td>SPBD</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 This bit must always be programmed to 1.

Bit 1 PM - Select Across the Plane Pixel Mode
0 = Single pixel transferred at a time
1 = Multiple pixels transferred at a time (across the plane mode)

Bit 2 LP - Last Pixel Off
0 = Last pixel of line or vector draw will be drawn
1 = Last pixel of line or vector draw will not be drawn

Bit 3 DT - Select Radial Direction Type
0 = x-y (axial)
1 = Radial

Bit 4 DY - Draw Pixel
0 = Move the current position only - don't draw
1 = Draw pixel(s)

Bits 7-5 DRWG-DIR - Select Drawing Direction

In the following table, radial drawing angle is measured counterclockwise from the X axis. For axial line draws, the line is drawn from left to right or a +X and from right to left for a -X, down for a +Y and up for a -Y. X or Y maj specifies the longest axis.

<table>
<thead>
<tr>
<th>7-5</th>
<th>Radial (bit 3 = 1)</th>
<th>x-y (Axial - bit 3 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0°</td>
<td>-Y,X maj,-X</td>
</tr>
<tr>
<td>001</td>
<td>45°</td>
<td>-Y,X maj,+X</td>
</tr>
<tr>
<td>010</td>
<td>90°</td>
<td>-Y,Y maj,-X</td>
</tr>
<tr>
<td>011</td>
<td>135°</td>
<td>-Y,Y maj,+X</td>
</tr>
<tr>
<td>100</td>
<td>180°</td>
<td>+Y,X maj,-X</td>
</tr>
<tr>
<td>101</td>
<td>225°</td>
<td>+Y,X maj,+X</td>
</tr>
<tr>
<td>110</td>
<td>270°</td>
<td>+Y,Y maj,-X</td>
</tr>
<tr>
<td>111</td>
<td>315°</td>
<td>+Y,Y maj,+X</td>
</tr>
</tbody>
</table>

Bit 8 WY - Wait for CPU Data
0 = Use 2D Graphics Engine-based data
1 = Wait for data to be transferred to or from the CPU

Bits 10-9 BUS SIZE - Select image write bus transfer width
00 = 8 bits
01 = 16 bits
10 = 32 bits. All doubleword bits beyond the image rectangle width are discarded. Each line starts with a fresh doubleword. The current drawing position ends up one pixel below the lower left hand corner of the image rectangle.
11 = 32 bits. This setting applies only to image transfers across the plane (each bit transferred is converted to a pixel). Only bits from the end of the line width to the next byte boundary are discarded. Data for the next line begins with the next byte. The current drawing position ends up one pixel to the right of the top right corner of the image rectangle.

This parameter applies only to image write data.
2D Graphics Engine Registers

Bit 11 Reserved

Bit 12 BS - Enable Byte Swap
 0 = High byte first, low byte second
 1 = Low byte first, high byte second

Bits 15-13 CMD-TYPE - Select Command Type

000 = NOP. This is used to set up short stroke vector drawing without writing a pixel.
001 = Draw Line. If bit 3 of this register is cleared to 0, the axial step constant, diagonal step constant and error term
are used to draw the line. If bit 3 is set to 1, the line will be drawn at the angle specified by bits 7-5 and with a
length in pixels as specified by the Major Axis Pixel Count (96E8H) register.
010 = Rectangle Fill. The position, width and height of a rectangle are defined. The rectangle is filled with a solid
color if it not used for an image transfer.
110 = BitBLT. A rectangle of defined location, width and height is moved to another defined location in display
memory.
111 = PatBLT. An 8x8 pixel patterned rectangle of defined location is transferred repeatedly to a destination
rectangle of defined location, width and height. The pattern copy is always aligned to an 8 pixel boundary and
transfers continue until the pattern is tiled into the entire destination rectangle. The starting X coordinate of the
source pattern rectangle should always be on an 8 pixel boundary.

Bits 17-16 SPBD - Source and Pattern Bitmap Descriptor
00 = Global bitmap descriptor
01 = Primary bitmap descriptor
10 = Secondary bitmap descriptor
11 = Reserved

Bits 19-18 DESTBD - Destination Bitmap Descriptor
00 = Global bitmap descriptor
01 = Primary bitmap descriptor
10 = Secondary bitmap descriptor
11 = Reserved

Bits 31-20 Reserved

Short Stroke Vector Transfer Register (MM811C)

Write Only Address: 9EE8H (811CH) BCI: D4H (lower word only)
Power-On Default: Undefined

This register defines two short stroke vectors. These are drawn one at a time based on the setting of the BYTE SWAP bit (bit 12) in
the Command (MM8118) register.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRWG-DIR</td>
<td>DRW-MV</td>
<td>PIXEL-LENGTH</td>
<td>DRWG-DIR.</td>
<td>DRW-MV</td>
<td>PIXEL-LENGTH</td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 PIXEL-LENGTH
Value = # pixels - 1

Bit 4 DRW-MV = Draw Pixel
0 = Move current position only - don't draw
1 = Draw pixel
Bits 7-5 DRWG-DIR. - Select Drawing Direction (measured counterclockwise from the X axis)

- 000 = 0°
- 001 = 45°
- 010 = 90°
- 011 = 135°
- 100 = 180°
- 101 = 225°
- 110 = 270°
- 111 = 315°

Bits 15-8 These bits duplicate bits 7-0 to define the second short stroke vector.

Background Color Register (MM8120)

Read/Write Address: A2E8H (8120H) BCI: D5H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BACKGROUND COLOR</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bits 31-0 BACKGROUND COLOR

Foreground Color Register (MM8124)

Read/Write Address: A6E8H (8124H) BCI: D6H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FOREGROUND COLOR</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bits 31-0 FOREGROUND COLOR

Bitplane Write Mask Register (MM8128)

Read/Write Address: AAE8H (8128H) BCI: D7H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIT-PLANE WRITE MASK</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bits 31-0 BIT-PLANE WRITE MASK

- If bit i = 0, bitplane i is not updated
- If bit i = 1, bitplane i is updated
Bitplane Read Mask Register (MM812C)

Read/Write Address: AEA8H (812CH)
Power-On Default: Undefined
BCI: D8H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT-PLANE READ MASK</td>
<td></td>
</tr>
</tbody>
</table>

Bits 31-0 BIT-PLANE READ MASK
If bit i = 0, bitplane i is not used as a data source
If bit i = 1, bitplane i is used as a data source

Color Compare Register (MM8130)

Read/Write Address: B2E8H (8130H)
Power-On Default: Undefined
BCI: D9H

This register contains the color value that is compared against the current bitmap color if the color compare option is turned on by setting bit 8 of the Pixel Control (MM8140) to 1. Bit 7 of the Pixel Control register determines whether a match or a non-match results in a pixel update.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPARISON COLOR WITH SOURCE</td>
<td></td>
</tr>
</tbody>
</table>

Bits 31-0 COMPARISON COLOR WITH SOURCE
Background and Foreground Mix Registers (MM8134, MM8136)

Read/Write: Address: B6E8H (8134H) (Background) Address: BAE8H (8136H) (Foreground)

Power-On Default: Undefined

This register has two different definitions, depending on the setting of bit 15.

Bit 15 = 0 (16 ROPs definition)

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>CLR SRC</th>
<th>R</th>
<th>MIX TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>R</td>
<td>CLR SRC</td>
<td>R</td>
<td>MIX TYPE</td>
</tr>
</tbody>
</table>

Bits 3-0 MIX TYPE - Select Mix Type

In the general case, a new color is defined. A logical operation such as AND or OR is then performed between it and the current bitmap color. If the bitplane to be written is enabled, the result of this logical "mix" is written to the bitmap as the new pixel color. The following table shows the mix types available (\(\neg\) = logical NOT).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>(\neg)current</td>
<td>(\neg)current OR (\neg)new</td>
</tr>
<tr>
<td>0001</td>
<td>logical zero</td>
<td>(\neg)current OR (\neg)new</td>
</tr>
<tr>
<td>0010</td>
<td>logical one</td>
<td>(\neg)current OR new</td>
</tr>
<tr>
<td>0011</td>
<td>leave current as is</td>
<td>(\neg)current OR new</td>
</tr>
<tr>
<td>0100</td>
<td>(\neg)new</td>
<td>current AND new</td>
</tr>
<tr>
<td>0101</td>
<td>current XOR new</td>
<td>(\neg)current AND new</td>
</tr>
<tr>
<td>0110</td>
<td>(\neg)(current XOR new)</td>
<td>(\neg)current AND (\neg)new</td>
</tr>
<tr>
<td>0111</td>
<td>new</td>
<td>(\neg)current AND (\neg)new</td>
</tr>
</tbody>
</table>

Bit 4 Reserved

Bits 6-5 CLR SRC - Select Color Source

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Background Color register is the color source</td>
</tr>
<tr>
<td>01</td>
<td>Foreground Color register is the color source</td>
</tr>
<tr>
<td>10</td>
<td>CPU data (the CPU is the color source)</td>
</tr>
<tr>
<td>11</td>
<td>Display memory (the display memory is the color source)</td>
</tr>
</tbody>
</table>

Bits 14-7 Reserved

Bit 15 RT - ROP Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16 ROPs register definition</td>
</tr>
<tr>
<td>1</td>
<td>256 ROPs register definition</td>
</tr>
</tbody>
</table>

Bit 15 = 1 (256 ROPs definition)

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>CLR PAT</th>
<th>CLR SRC</th>
<th>MIX TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>R</td>
<td>MIX TYPE</td>
</tr>
</tbody>
</table>

Bits 7-0 MIX TYPE - Select Mix Type

256 raster operations according the Microsoft definition

Bits 9-8 CLR-SRC - Select Color Source

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Background Color register is the color source</td>
</tr>
<tr>
<td>01</td>
<td>Foreground Color register is the color source</td>
</tr>
<tr>
<td>10</td>
<td>CPU data (the CPU is the color source)</td>
</tr>
<tr>
<td>11</td>
<td>Display memory (the display memory is the color source)</td>
</tr>
</tbody>
</table>
2D Graphics Engine Registers

Bits 11-10 CLR-PAT - Select Color Pattern
00 = Background Color register is the color source
01 = Foreground Color register is the color source
10 = Reserved
11 = 8x8 pattern from display memory

The source and pattern colors cannot both be from display memory.

Bits 14-12 Reserved
Bit 15 RT - ROP Type
0 = 16 ROPs register definition
1 = 256 ROPs register definition

Read Register Data Register

Read Only Address: BEE8H
Power-On Default: Undefined

Note: This register (and the Read Select Register, BEE8, Index F) are only used with non-packed MMIO addressing. The various indexes can be read directly at their packed new MMIO addresses. The pipeline issue described below does not apply to this case.

A read of this register produces a read of the register specified by bits 3-0 of the Read Register Select (BEE8H, Index 0FH) register. Each read of BEE8H causes the read index (bits 3-0 of BEE8H, Index 0FH) to increment by one. Registers BEE8H, Indices 0H to 0EH, 9AE8H and 42E8H can thus be rapidly read by successive reads from BEE8H.

Note: Writes to the BEE8H registers (except the read index register, Index 0FH) are pipelined. Therefore, to correctly read back a write to one of these registers, issue an engine command and wait for engine idle. Next, write the desired register index to BEE8H, Index 0FH and read the data from BEE8H.

The BEE8H registers are written directly by writing to BEE8H with the appropriate register index in bits 15-12.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minor Axis Pixel Count Register (MM8148)

Write Only Address: BEE8H, Index 0 (8148H)
Power-On Default: Undefined BCI: DFH (lower word)

This register specifies the height for rectangles, image transfers, BitBLTs and PatBLTs.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 RECTANGLE HEIGHT
Value = (number of pixels in the height of the rectangle) - 1

Bits 15-12 INDEX = 0H
Top Scissors Register (MM8138)

Write Only
Address: BEE8H, Index 1 (8138H)
Power-On Default: Undefined
BCI: DBH (lower word)

This register specifies the top of the clipping rectangle. It is the lowest Y value that will be drawn.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bits 11-0 CLIPPING TOP LIMIT
Bits 15-12 INDEX = 1H

Left Scissors Register (MM813A)

Write Only
Address: BEE8H, Index 2 (813AH)
Power-On Default: Undefined
BCI: DBH (upper word)

This register specifies the left side of the clipping rectangle. It is the lowest X value that will be drawn.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bits 11-0 CLIPPING LEFT LIMIT
Bits 15-12 INDEX = 2H

Bottom Scissors Register (MM813C)

Write Only
Address: BEE8H, Index 3 (813CH)
Power-On Default: Undefined
BCI: DCH (lower word)

This register specifies the bottom of the clipping rectangle. It is the highest Y value that will be drawn.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bits 11-0 CLIPPING BOTTOM LIMIT
Bits 15-12 INDEX = 3H
Bits 15-11 Reserved

Right Scissors Register (MM813E)

Write Only
Address: BEE8H, Index 4 (813EH)
Power-On Default: Undefined
BCI: DCH (upper word)

This register specifies the right side of the clipping rectangle. It is the highest X value that will be drawn.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Bits 11-0 CLIPPING RIGHT LIMIT
Bits 15-12 INDEX = 4H
Pixel Control Register (MM8140)

- **Write Only**
- **Address**: BEE8H, Index AH (8140H)
- **Power-On Default**: Undefined
- **BCI**: DDH (lower word)

Bit Diagram

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>DT-EX-SRC</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>R</td>
</tr>
</tbody>
</table>

- **Bits 5-0**: Reserved
- **Bits 7-6**: DT-EX-SRC - Select Mix Register
 - 00 = Foreground Mix register is always selected
 - 01 = Reserved
 - 10 = CPU data determines Mix register selected
 - 11 = Display memory current value determines Mix register selected
- **Bits 11-8**: Reserved
- **Bits 15-12**: INDEX = 0AH

Multifunction Control Miscellaneous 2 Register (MM8142)

- **Write Only**
- **Address**: BEE8H, Index DH (8142H)
- **Power-On Default**: Undefined
- **BCI**: DDH (upper word)

Bit Diagram

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>=1</td>
</tr>
<tr>
<td>14</td>
<td>=1</td>
</tr>
<tr>
<td>13</td>
<td>=0</td>
</tr>
<tr>
<td>12</td>
<td>=1</td>
</tr>
<tr>
<td>11</td>
<td>=0</td>
</tr>
<tr>
<td>10</td>
<td>=0</td>
</tr>
<tr>
<td>9</td>
<td>=0</td>
</tr>
<tr>
<td>8</td>
<td>SRC-BASE</td>
</tr>
<tr>
<td>7</td>
<td>=0</td>
</tr>
<tr>
<td>6</td>
<td>DST-BASE</td>
</tr>
<tr>
<td>5</td>
<td>=0</td>
</tr>
<tr>
<td>4</td>
<td>=0</td>
</tr>
<tr>
<td>3</td>
<td>=0</td>
</tr>
<tr>
<td>2</td>
<td>=0</td>
</tr>
<tr>
<td>1</td>
<td>=0</td>
</tr>
<tr>
<td>0</td>
<td>=0</td>
</tr>
</tbody>
</table>

- **Bits 2-0**: DST-BASE - Destination Base Address
 - 000 = First destination memory address is in the 1st MByte of display memory
 - 001 = First destination memory address is in the 2nd MByte of display memory
 - 010 = First destination memory address is in the 3rd MByte of display memory
 - 011 = First destination memory address is in the 4th MByte of display memory
 - This field supersedes bits 1-0 of BEE8H, Index E if any of these 3 bits are set to 1.
- **Bit 3**: Reserved
- **Bits 6-4**: SRC-BASE - Source Base Address
 - 000 = First source memory address is in the 1st MByte of display memory
 - 001 = First source memory address is in the 2nd MByte of display memory
 - 010 = First source memory address is in the 3rd MByte of display memory
 - 011 = First source memory address is in the 4th MByte of display memory
 - This field supersedes bits 3-2 of BEE8H, Index E if any of these three bits are set to 1.
- **Bit 7**: Reserved
- **Bits 9-8**: WFE - Wait for FIFO Empty
 - 10 = Wait for write FIFO empty between each drawing
 - All other values have no effect. Bits 7-0 of this register must be programmed to FFH for this to be effective.
- **Bits 11-10**: Reserved
- **Bits 15-12**: INDEX = 0DH
Multifunction Control Miscellaneous (MM8144)

Write Only

Address: BEE8H, Index EH (8144H)

Power-On Default: Undefined

Software must initialize this register appropriately before the 2D Graphics Engine is used. See the description for BEE8H, read only, for the required two step register update sequence.

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>DC</td>
<td>R</td>
<td>32B</td>
<td>ENB</td>
<td>SRC</td>
<td>CMP</td>
<td>SRC-BA</td>
<td>21 20</td>
<td>DEST-BA</td>
<td>21 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0
DEST-BA 21 20 - Destination Base Address Bits 21-20
00 = First destination memory address is in the 1st MByte of display memory
01 = First destination memory address is in the 2nd MByte of display memory
10 = First destination memory address is in the 3rd MByte of display memory
11 = First destination memory address is in the 4th MByte of display memory

This field is superseded by bits 2-0 of BEE8H, Index D if any of the BEE8H Index D bits is set to 1.

Bits 3-2
SRC-BA 21 20 - Source Base Address Bits 21-20
00 = First source memory address is in the 1st MByte of display memory
01 = First source memory address is in the 2nd MByte of display memory
10 = First source memory address is in the 3rd MByte of display memory
11 = First source memory address is in the 4th MByte of display memory

This field is superseded by bits 6-4 of BEE8H, Index D if any of the BEE8H Index D bits is set to 1.

Bit 4
RSF - Select Upper Word in 32 Bits/Pixel Mode
0 = Selects lower 16 bits for accesses to 32-bit registers in 32 bpp mode
1 = Selects upper 16 bits for accesses to 32-bit registers in 32 bpp mode

Bit 5
EXT CLIP - Enable External Clipping
0 = Only pixels inside the clipping rectangle are drawn
1 = Only pixels outside the clipping rectangle are drawn

Bit 6
Reserved

Bit 7
SRC NE - Don't Update Bitmap if Source Not Equal to Color Compare Color
0 = Don't update current bitmap if the Color Compare (B2E8) register value is equal to the color value of the source bitmap
1 = Don't update current bitmap if the Color Compare (B2E8) register value is not equal to the color value of the source bitmap

This bit is only active if bit 8 of this register is set to 1.

Bit 8
ENB CMP - Enable Color Compare
0 = Disable color comparison
1 = Enable color comparison

Bit 9
32B - Enable 32-bit Register Write
0 = 16-bit 2D Engine register access
1 = 32-bit 2D Engine register access

Bit 10
Reserved

Bit 11
DC - Disable Clipping
0 = Clipping defined by scissors registers
1 = Clipping disabled

Bits 15-12
INDEX = 0EH
Read Register Select Register (MM8146)

Write Only
Address: BEE8H, Index FH, (8146H)
Power-On Default: Undefined
BCI: DEH (upper word)

Although this register has a BCI address, it will never be used with BCI because it deals only with register reads using non-packed MMIO.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>READ-REG-SEL</td>
</tr>
</tbody>
</table>

Bits 3-0 READ-REG-SEL - Read Register Select

When BEE8H is read, the value returned is determined by this read register index according to the following:

0000 = BEE8H, Index 0H
0001 = BEE8H, Index 1H
0010 = BEE8H, Index 2H
0011 = BEE8H, Index 3H
0100 = BEE8H, Index 4H
0101 = BEE8H, Index 0AH
0110 = BEE8H, Index 0EH
0111 = 9AE8H (Bits 15-13 of the read data are forced to 0)
1000 = 42E8H (Bits 15-12 of the read data are forced to 0)
1001 = Reserved
1010 = BEE8H, Index 0DH

The read register index increments by one with each reading of BEE8H.

Bits 11-4 Reserved
Bits 15-12 INDEX = 0FH

Major Axis Pixel Count Register (MM814A)

Read/Write
Address: 96E8H (814AH)
Power-On Default: Undefined
BCI: DFH (upper word)

This register specifies the length (in pixels) of the major (longest) axis for solid and textured lines and the width for rectangles, image transfers, BitBLTs and PatBLTs.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>RECTANGLE WIDTH/LINE PARAMETER MAX</td>
</tr>
</tbody>
</table>

Bits 11-0 RECTANGLE WIDTH/LINE PARAMETER MAX

The value is the number of pixels along the major axis - 1.

Bits 15-12 Reserved
Global Bitmap Descriptor 1 Register (MM8168)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-0</td>
<td>OFFSET</td>
<td></td>
<td>Value = Starting address of the bitmap (in bytes)</td>
</tr>
</tbody>
</table>

Global Bitmap Descriptor 2 Register (MM816C)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-0</td>
<td>BDS - Bitmap Descriptor Size</td>
<td></td>
<td>0 = 32 bits (this register only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = 64 bits (includes global bitmap descriptor 1)</td>
</tr>
<tr>
<td></td>
<td>The 64-bit descriptor must be enabled when memory tiling is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-0</td>
<td>STRIDE</td>
<td>R</td>
<td>Value = Stride of the bitmap (in pixels * 16)</td>
</tr>
<tr>
<td></td>
<td>BE - BCI Enable (2D Engine only)</td>
<td>R</td>
<td>0 = BCI disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = BCI enabled</td>
</tr>
<tr>
<td>23-16</td>
<td>COLOR FORMAT</td>
<td>R</td>
<td>Value = Binary coding of the color depth in bits/pixel</td>
</tr>
<tr>
<td>27-26</td>
<td>TF - Tile Format</td>
<td></td>
<td>00 = Linear</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01 = Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 = 16 bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 = 32 bits</td>
</tr>
</tbody>
</table>

Bit 1 Reserved

Bit 2 BLE - Big/Little Endian Addressing for Image Writes
0 = Little endian
1 = Big endian

This bit is use for S3 testing only.

Bit 3 BE - BCI Enable (2D Engine only)
0 = BCI disabled
1 = BCI enabled

Bits 12-4 STRIDE

Value = Stride of the bitmap (in pixels * 16)

Bits 15-13 Reserved

Bits 23-16 COLOR FORMAT

Value = Binary coding of the color depth in bits/pixel

Bits 25-24 TF - Tile Format
00 = Linear
01 = Reserved
10 = 16 bits
11 = 32 bits

Bits 27-26 Reserved
2D Graphics Engine Registers

Bit 28 BD - Block Write Disable
0 = Block write enabled
1 = Block write disabled

Bits 31-29 Reserved

Primary Bitmap Descriptor 1 Register (MM8170)

Read/Write

Address: F2E8H (8170H)

Power-On Default: Undefined

BCI: E2H

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET</td>
<td>OFFSET</td>
<td></td>
</tr>
</tbody>
</table>

Bits 31-0 OFFSET

Value = Starting address of the bitmap (in bytes)

Primary Bitmap Descriptor 2 Register (MM8174)

Read/Write

Address: F6E8H (8174H)

Power-On Default: Undefined

BCI: E3H

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRIDE</td>
<td>TILE FORMAT</td>
<td>COLOR DEPTH</td>
<td></td>
</tr>
</tbody>
</table>

Bits 15-0 STRIDE

Value = Stride of the bitmap (in pixels)

If the value = 0, the bitmap is linear.

Bits 22-16 COLOR DEPTH

Value = Binary coding of the color depth in bits/pixel

For example, 8 bits/pixel is coded 0000 1000b. The value must be 8, 16 or 32. 15 bits/pixel is coded as 16.

Bits 27-24 TILE FORMAT

- 0000 = Linear
- 0010 = 16 bits
- 0011 = 32 bits

All other values are reserved.

Bit 28 BD - Block Write Disable
0 = Block write enabled
1 = Block write disabled

Bits 31-29 Reserved
Secondary Bitmap Descriptor 1 Register (MM8178)

Read/Write Address: FAE8H (8178H)
Power-On Default: Undefined
BCI: E4H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Offset

Bits 31-0 **OFFSET**

Value = Starting address of the bitmap (in bytes)

Secondary Bitmap Descriptor 2 Register (MM817C)

Read/Write Address: FEE8H (817CH)
Power-On Default: Undefined
BCI: E5H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Stride

Bits 15-0 **STRIDE**

Value = Stride of the bitmap (in pixels)

If the value = 0, the bitmap is linear.

Bits 22-16 **COLOR DEPTH**

Value = Binary coding of the color depth in bits/pixel

For example, 8 bits/pixel is coded 0000 1000b. The value must be 8, 16 or 32. 15 bits/pixel is coded as 16.

Bits 27-24 **TILE FORMAT**

0000 = Linear
0010 = 16 bits
0011 = 32 bits

All other values are reserved.

Bit 28 **BD - Block Write Disable**

0 = Block write enabled
1 = Block write disabled

Bits 31-29 **Reserved**
Section 8: Streams Processor Register Descriptions

Many Streams Processor registers will normally be written via the BCI. Direct new MMIO access for these registers and those without BCI addresses is also available. The register identifier MMxxxx means that the register is memory mapped at offset 200 xxxx from the base address.

Primary Stream Control Register (MM8180)

Read/Write Address: 8180H
BCI: A0H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>PSFC</td>
<td>R</td>
<td>PSIDF</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 23-0
Reserved

Bits 26-24
PSIDF - Primary Stream Input Data Format
000 = RGB-8 (CLUT)
001 = 4-bit Alpha RGB (AAAAxxx.8.8.8)
010 = Reserved
011 = KRGB-16 (1.5.5.5)
100 = Reserved
101 = RGB-16 (5.6.5)
110 = RGB-24 (8.8.8) - This mode is not accelerated.
111 = XRGB-32 (X.8.8.8)

Bit 27
Reserved

Bits 30-28
PSFC - Primary Stream Filter Characteristics
000 = Primary stream not filtered
001 = Primary stream stretched 2x both horizontally and vertically using replication
010 = Primary stream stretched 2x horizontally using interpolation and 2x vertically using replication
Other values reserved

Bit 31
Reserved

Color/Chroma Key Control Register (MM8184)

Read/Write Address: 8184H
BCI: A1H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/U/Cb KEY (LOW)</td>
<td>B/V/Cr KEY (LOW)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>CKI</td>
<td>KC</td>
<td>R</td>
<td>RGB CC</td>
<td>R/Y KEY (LOW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-0
B/V/Cr key value (lower bound for chroma)

Bits 15-8
G/U/Cb key value (lower bound for chroma)

Bits 23-16
R/Y key value (lower bound for chroma)
Bits 26-24 RGB CC - RGB Color Comparison Precision
000 = Compare bit 7 of RGB (compare red bit 7's, green bit 7's and blue bit 7's)
001 = Compare bits 7-6 of RGB
010 = Compare bits 7-5 of RGB
011 = Compare bits 7-4 of RGB
100 = Compare bits 7-3 of RGB
101 = Compare bits 7-2 of RGB
110 = Compare bits 7-1 of RGB
111 = Compare bits 7-0 of RGB

Bit 27 Reserved

Bit 28 KC - Key Control
0 = Extract key data from input stream key bit (if present). (KRGB-16, 1.5.5.5 only)
 If the K bit is 0, the pixel from the other stream is used (transparent). If the K bit is
 1, the key bit streams pixel is used (opaque)
1 = Enable color or chroma keying for all modes other than KRGB-16

Bit 29 CKI - Color Keying on Index
0 = Color keying based on color value
1 = Color keying based on comparison of color index value with value specified in
 MM8184_7-0.

Bits 31-30 Reserved

Genlocking Control Register (MM8188)

Read/Write Address: 8188H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>GL - Genlock Support Enable</td>
</tr>
<tr>
<td>30</td>
<td>HD - HDTV Function Enable</td>
</tr>
<tr>
<td>29-16</td>
<td>CHARACTER CLOCKS BETWEEN VSYNCS (Read Only)</td>
</tr>
<tr>
<td>15-0</td>
<td>CHARACTER CLOCKS BETWEEN VSYNCS (Read Only)</td>
</tr>
</tbody>
</table>

Bits 15-0 CHARACTER CLOCKS BETWEEN VSYNCS (Read Only)

Value = \([\text{Character clocks from } T1 \text{ to } T2]/16\)

Where:
- T1 = The falling edge of VSYNC (VSYNC active high) or the rising edge of VSYNC (VSYNC active low)
- T2 = The rising edge of the LPB VSYNC input.

Bits 29-16 Reserved

Bit 30 HD - HDTV Function Enable
0 = HDTV function disabled
1 = HDTV function enabled

When this bit is set to 1, DCLK (pixel clock) is driven out on the ROMA3 pin (to an HDTV encoder), and the
OVERLAY signal is driven out on the ROMA2 pin to control an analog MUX such that primary stream data is
displayed when OVERLAY is low and high resolution RGB data is displayed when OVERLAY is high.

Bit 31 GL - Genlock Support Enable
0 = Genlock support disabled
1 = Genlock support enabled

Setting this bit to 1 enables the counter described in bits 15-0 of this register.
Secondary Stream Control Register (MM8190)

Read/Write Address: 8190H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>SOURCE HORIZONTAL PIXEL SIZE</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Bits 11-0: SOURCE HORIZONTAL PIXEL SIZE
 - Value = # of pixels/line in the source image
 - Updating of this field is controlled by CR66_4 and CR51_7.

- Bits 15-12: Reserved

- Bits 18-16: HDM - Horizontal Downscaling Mode
 - 010 = 4:1
 - 011 = 8:1
 - 100 = 16:1
 - 101 = 32:1
 - 110 = 64:1
 - 111 = Reserved
 - All other values result in no scaling. Use MM8198 for scaling ratios between 1:1 and 2:1. Downscaling is only valid for YCbCr formats.

- Bits 23-19: Reserved

 - 000 = CbYCrY-16 (4.2.2)
 - 001 = YCbCr-16 (4.2.2)
 - 010 = YUV-16 (4.2.2)
 - 011 = KRGB-16 (1.5.5.5)
 - 100 = YCbCr-16 (4.2.0)
 - 101 = RGB-16 (5.6.5)
 - 110 = RGB-24 (8.8.8)
 - 111 = XRGB-32 (8.8.8)
 - Updating of this field is controlled by CR66_4 and CR51_7.

- Bits 30-27: Reserved

- Bit 31: LOI - Luma-only Interpolation
 - 0 = All YUV values interpolated when vertical filtering enabled
 - 1 = Only Y (luma) values interpolated when vertical filtering enabled

Chroma Key Upper Bound Register (MM8194)

Read/Write Address: 8194H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>U/Cb KEY (UPPER)</td>
</tr>
<tr>
<td>14</td>
<td>V/Cr KEY (UPPER)</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Bits 7-0: V/Cr key value (upper bound)
- Bits 15-8: U/Cb key value (upper bound)
- Bits 23-16: Y key value (upper bound)
Secondary Stream Horizontal Scaling Register (MM8198)

<table>
<thead>
<tr>
<th>Bits 15-0</th>
<th>HORIZONTAL SCALING RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value = (# of pixels/line in source image)/(# of pixels/line in scaled image)</td>
<td></td>
</tr>
<tr>
<td>This value has a format of D.FFFFFFFFFFFFFFFF, and FFFFFFFFFFFFFFFF is the fraction resulting from the value calculation. The decimal part D is always 0 when upscaling is enabled. The D bit is set to 1 for horizontal downscaling, with the fractional part defining the degree of downscaling. The maximum value is all 1's, resulting in approximately 2:1 downscaling. Downscaling is only valid for YCbCr formats. The horizontal downscaling mode for ratios larger than 2:1 is defined via MM8190_18-16. Updating of this field is controlled by CR66_5 and CR51_7.</td>
<td></td>
</tr>
</tbody>
</table>

Bits 31-16 HORIZONTAL INITIAL VALUE

| Value = S.FFFFFFFFFFFFFFF |
| where S is always 0 (positive value) and FFFFFFFFFFFFFFF is the fractional part, which can be programmed from 000 0000 0000 0000b to 111 1111 1111 1111b. Updating of this field is controlled by CR66_4 and CR51_7. |

Color Adjustment Register (MM819C)

| Bits 7-0 | BRIGHTNESS - Brightness Control |
| Value = BBBB BBB |
| where BBBB BBB is the brightness adjustment factor (0 - 255). The larger the number, the greater the brightness. |

| Bits 12-8 | CONTRAST - Contrast Control |
| Value = C.CCCC |
| This is the contrast adjustment, which can vary from 0 (0.0000) to 1.9375 (1.1111). |

| Bits 14-13 | Reserved |

| Bits 15 | BCE - Brightness and Contrast Enable |
| 0 = Brightness and contrast control disabled |
| 1 = Brightness and contrast control enabled |
| This control should be enabled only for YUV/YCbCr secondary stream formats and must be disabled for RGB secondary stream formats. |
Bits 20-16 HUE/SAT 1 - Hue and Saturation Factor 1

Value = SF.FFF

where S is the sign bit (1 = negative) and F.FFF is the factor [SAT * cosine A]. SAT is the saturation, which can vary from -1.875 (10001) to 1.875 (01111) and A is the hue angle, the cosine of which can vary from -1 to +1. The value is in 2's complement format.

Bits 23-21 Reserved

Bits 28-24 HUE/SAT 2 - Hue and Saturation Factor 2

Value = SF.FFF

where S is the sign bit (1 = negative) and F.FFF is the factor [SAT * sine A]. SAT is the saturation, which can vary from -1.875 (10001) to 1.875 (01111) and A is the hue angle, the sine of which can vary from -1 to +1.

Bits 30-29 Reserved

Bit 31 HSE - Hue and Saturation Control Enable

0 = Hue and saturation control disabled
1 = Hue and saturation control enabled

This control should be enabled only for YUV/YCbCr secondary stream formats and must be disabled for RGB secondary stream formats.

Blend Control Register (MM81A0)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Control Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Ks</td>
<td>secondary stream blend coefficient</td>
<td>CR66.4 and CR51.7</td>
</tr>
<tr>
<td>30-29</td>
<td>KP</td>
<td>primary stream blend coefficient</td>
<td>CR66.4 and CR51.7</td>
</tr>
<tr>
<td>28-19</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-11</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-3</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-0</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Read/Write Address: 81A0H
Power-on Default: 00000000H

B: C: 88
Bits 26-24 Compose Mode
000 = Secondary stream opaque overlay on primary stream
001 = Primary stream opaque overlay on secondary stream
010 = Dissolve, \([Pp \times Kp + Ps \times (8 - Kp)]/8 \), ignore Ks
011 = Fade, \([Pp \times Kp + Ps \times Ks]/8 \), where \(Kp + Ks \) must be \(\leq 8 \)
100 = Alpha blending, (higher alpha means greater primary stream dominance on pixel color)
101 = Color key on primary stream (secondary stream overlay on primary stream)
110 = Color or chroma key on secondary stream (primary stream overlay on secondary stream)
111 = Reserved

When this field is programmed, the value does not take effect until the next VSYNC.

Bits 31-27 Reserved

Primary Stream Frame Buffer Address 0 Register (MM81C0)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>TBR</td>
<td>TBW</td>
<td>R</td>
<td>VS</td>
<td>PBS</td>
<td>PRIMARY BUFFER ADDRESS 0</td>
<td></td>
</tr>
</tbody>
</table>

Bits 24-0 PRIMARY BUFFER ADDRESS 0

Value = Primary stream frame buffer starting address 0

This value must be quadword aligned.

Bit 25 PBS - Primary Stream Buffer Select
0 = Primary frame buffer starting address 0 (MM81C0_24-0) used for the primary stream
1 = Primary frame buffer starting address 1 (MM81C4_24-0) used for the primary stream

Bit 26 VS - VSYNC Off Mode
0 = VSYNC off mode off
1 = VSYNC off mode on

When this bit is set, the display buffer can be changed (bit 25 of this register) between VSYNCS.

Bit 27 Reserved

Bits 29-28 TBW – Triple Buffering Writes (Rev. B)
00 = Triple buffering not used
01 = Next write is to buffer 0
10 = Next write is to buffer 1
11 = Next write is to buffer 2

Bits 31-30 TBR – Triple Buffering Read (Rev. B)
00 = Triple buffering not used
01 = Next read is from buffer 0
10 = Next read is from buffer 1
11 = Next read is from buffer 2
Primary Stream Frame Buffer Address 1 Register (MM81C4)

Read/Write Address: 81C4H
Power-on Default: Undefined

If the primary stream is double buffered, this register specifies the starting address in the frame buffer for the second buffer. Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bits 24-0 PRIMARY BUFFER ADDRESS 1

Value = Primary stream frame buffer starting address 1

This value must be quadword aligned.

Bits 31-25 Reserved

Primary Stream Stride Register (MM81C8)

Read/Write Address: 81C8H
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bits 12-0 PRIMARY STREAM STRIDE

Value = byte offset of vertically adjacent pixels in the primary stream buffer(s)

If double or triple buffering is used, the stride must be the same for all buffers.

Bits 15-13 Reserved

Bits 29-16 PRIMARY STREAM TILE OFFSET

Value = \(\text{Scan line width in bytes/128 bytes per tile} \times 256 \text{ QWords/tile}\)

This is the # of QWords from a given position in one tile to the same position in the tile immediately below. This applies only to 16-line tiles.

Bit 30

BPP - Tiling Bits/Pixel

0 = 16 bits/pixel tile format

1 = 32 bits/pixel tile format

This bit applies when tiling is enabled via bit 31 of this register. The power-on default value is 0.

Bit 31

ET - Enable Tiling

0 = Primary stream tiling off

1 = Primary stream tiling on

The power-on default value is 0.
Secondary Stream Multiple Buffer/LPB Support Register (MM81CC)

Read/Write Address: 81CCH
Power-on Default: xxxxxx00H
BCI: B3H

Bits 7-0 of this register control double or triple buffering, depending on the setting of bit 7. The bit definitions are different for each case, so two sets of definitions are provided. The bit diagram following is for the triple buffering case. This register is only programmed when double or triple buffering of the secondary stream with LPB input is required.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>BS</td>
<td>LST</td>
<td>LSL</td>
<td>LIS</td>
<td>SBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

The following definitions for bits 6-0 apply when double buffering is selected (bit 7 of this register cleared to 0).

Bit 0 Reserved

Bits 2-1 SBS - Secondary Stream Buffer Select
00 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream
01 = Secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream
10 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream OR secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF10_22-0) used for the LPB input stream. Which alternative applies is determined by LPB starting address register selected by bit 4 of this register
11 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF10_22-0) used for the LPB input stream OR secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream. Which alternative applies is determined by the LPB starting address register selected by bit 4 of this register

Bit 3 Reserved

Bit 4 LIS - LPB Input Buffer Select
0 = LPB frame buffer starting address 0 (MMFF0C_21-0) used for the LPB input
1 = LPB frame buffer starting address 1 (MMFF10_21-0) used for the LPB input

This bit selects the starting address for writing LPB data into the frame buffer. When the value programmed to this bit takes effect is determined by the setting of bit 5 of this register. This bit can be toggled at the completion of writing all the data for a frame to the frame buffer via bit 6 of this register

Bit 5 LSL - LPB Input Buffer Select Loading
0 = The value programmed into bit 4 of this register takes effect immediately
1 = The value programmed into bit 4 of this register takes effect at the next end of frame (completion of writing all the data for a frame into the frame buffer)

Bit 6 LST - LPB Input Buffer Select Toggle
0 = End of frame (completion of writing all the data for a frame into the frame buffer) has no effect on the setting of bit 4 of this register
1 = End of frame causes the setting of bit 4 of this register to toggle
The following definitions for bits 6-0 apply when triple buffering is selected (bit 7 of this register set to 1).

Bits 2-0 SBS - Secondary Stream Buffer Select
000 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream
010 = Secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream
0x1 = Secondary frame buffer starting address 2 (MM8308_22-0) used for the secondary stream
10x = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream OR secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 1 (MMFF10_22-0) used for the LPB input stream OR secondary frame buffer starting address 2 (MM8308_22-0) used for the secondary stream and LPB frame buffer starting address 2 (MMFF38_22-0) used for the LPB input stream. Which alternative applies is determined by the LPB starting address register selected by bits 4-3 of this register.
11x = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame buffer starting address 1 (MM81D4_22-0) used for the LPB input stream OR secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 2 (MM8308_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream. Which alternative applies is determined by the LPB starting address register selected by bits 4-3 of this register.

Bits 4-3 LIS - LPB Input Buffer Select
00 = LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input
01 = LPB frame buffer starting address 2 (MMFF38_22-0) used for the LPB input
10 = LPB frame buffer starting address 1 (MMFF10_22-0) used for the LPB input
11 = Reserved

This bit selects the starting address for writing LPB data into the frame buffer. When the value programmed to this bit takes effect is determined by the setting of bits 6-5 of this register. This selected address can be rotated among at the completion of writing all the data for a frame to the frame buffer via bit 6 of this register.

Bit 5 LSL - LPB Input Buffer Select Loading
0 = The value programmed into bits 4-3 of this register takes effect immediately
1 = The value programmed into bits 4-3 of this register takes effect as specified by bit 6 of this register

Bit 6 LST - LPB Input Buffer Select Toggle
0 = The value programmed into bits 4-3 of this register takes effect after all data has been written to the frame buffer for the current frame. The buffer selection remains unchanged until changed by programming.
1 = The value programmed into bits 4-3 of this register takes effect after all data has been written to the frame buffer for the current frame. At the end of each successive frame, the buffer selection will shift to the next higher buffer (or wrap from buffer 2 to buffer 0). This bit is only effective when bit 5 of this register = 1.

Bit 7 BS - Buffering Select
0 = Double buffering
1 = Triple buffering

Bits 31-8 Reserved
Secondary Stream Frame Buffer Address 0 Register (MM81D0)

Read/Write Address: 81D0H BCI: B4H
Power-on Default: Undefined

If a secondary stream is enabled, this register specifies the starting address in the frame buffer. Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY BUFFER ADDRESS 0

Bits 24-0 SECONDARY BUFFER ADDRESS 0

Value = Secondary stream frame buffer starting address 0

This value must be quadword aligned. In YCbCr420 mode, this is the Y base address.

Bits 31-25 Reserved

Secondary Stream Frame Buffer Address 1 Register (MM81D4)

Read/Write Address: 81D4H BCI: B5H
Power-on Default: Undefined

If the secondary stream is double buffered, this register specifies the starting address in the frame buffer for the second buffer. Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY BUFFER ADDRESS 1

Bits 24-0 SECONDARY BUFFER ADDRESS 1

Value = Secondary stream frame buffer starting address 1

This value must be quadword aligned.

Bits 31-25 Reserved
Secondary Stream Stride Register (MM81D8)

Read/Write Address: 81D8H
Power-on Default: Undefined
BCI: B6H

Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>R</td>
<td>R</td>
<td>SECONDARY STREAM STRIDE</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>SST</td>
<td>R</td>
<td>SECONDARY STREAM TILE OFFSET</td>
<td></td>
</tr>
</tbody>
</table>

Bits 12-0 SECONDARY STREAM STRIDE

Value = byte offset of vertically adjacent pixels in the secondary stream buffer(s)

If double or triple buffering is used, the stride must be the same for all buffers. In YCbCr420 mode, this field is the secondary stream Y stride.

Bits 14-13 Reserved

Bit 15 SBP - Streams Bits/Pixel

0 = 16 bpp
1 = 32 bpp

This bit is only required when tiling is enabled.

Bits 29-16 SECONDARY STREAM TILE OFFSET

14-bit Value = [Scan line width in bytes/128 bytes per tile] x 256 QWords/tile

This is the # of QWords from a given position in one tile to the same position in the tile immediately below. This applies only to 16-line tiles.

Bit 30 Reserved

Bit 31 SST - Secondary Stream Tiling

0 = Secondary stream tiling off
1 = Secondary stream tiling on

Secondary Stream Vertical Scaling Register (MM81E0)

Read/Write Address: 81E0H
Power-on Default: 00000000H
BCI: B8H

Updating of this register is controlled via CR66_5 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>VERT SCALE RATIO</td>
<td></td>
</tr>
</tbody>
</table>

Bits 19-0 VERTICAL SCALING RATIO

Value = (# of lines in source image)/(# of lines in scaled image)

This value has a format of DDDDD.FFFFFFFFFFFFFF, and FFFFFFFFFFFFF is the fraction resulting from the value calculation. For upscaling, the decimal part DDDDD is always 0. For downscaling, the maximum value is all 1’s, resulting in a maximum downscaling of approximately 32:1. Downscaling is only valid for YCbCr modes.

Bits 31-20 Reserved
Secondary Stream Vertical Initial Value (MM81E4)

Read/Write Address: 81E4H
Power-on Default: 00000000H

Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

VERTICAL INITIAL VALUE 1

Bits 15-0 VERTICAL INITIAL VALUE 1
Value = S.FFFFFFFFFFFFFFFF
where S is the sign bit (1 = negative) and FFFFFFFFFFFFFFF is the fractional part. The value can range from 1.000 0000 0000 0001b (-0.9999694824) to 0.111 1111 1111 1111b (0.9999694824).

Bits 31-16 VERTICAL INITIAL VALUE 2
Value = S.FFFFFFFFFFFFFFFF
where S is the sign bit (1 = negative) and FFFFFFFFFFFFFFF is the fractional part. The value can range from 1.000 0000 0000 0001b (-0.9999694824) to 0.111 1111 1111 1111b (0.9999694824).

Secondary Stream Source Line Count (MM81E8)

Read/Write Address: 81E8H
Power-on Default: 00000000H

Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SOURCE LINE COUNT

Bits 10-0 SOURCE LINE COUNT
Value = # of lines in the source image (before scaling)

Bits 14-11 Reserved
Bit 15 EVI - Enable Vertical Interpolation
0 = Line duplication
1 = Enable vertical interpolation

This bit is effective when a non-zero scaling ratio is programmed in MM81E0_15-0. Line duplication is used when the line buffer is too small or when there is insufficient bandwidth for interpolation.

Bits 31-16 Reserved
Streams FIFO Register (MM81EC)

Read/Write Address: 81ECH
Power-on Default: 00006000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P FIFO THRESHOLD</td>
<td>S FIFO THRESHOLD</td>
<td>FIFO ALLOCATION</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>PFT</td>
</tr>
</tbody>
</table>

Bits 4-0 STREAMS FIFO ALLOCATION

The following apply only when vertical interpolation is disabled (MM81E8_15 = 0).

00010 = Primary Stream (PS) = 64 slots, Secondary Stream (SS) = 204 slots
11110 = PS = 204 slots (Enhanced mode only)

All other values are reserved.

When vertical interpolation is enabled (MM81E8_15 = 1), FIFO allocation is fixed as follows:

For all values: PS = 64 slots, SS = 64 slots, Line Buffer = 204 slots

Each slot holds one quadword.

Bits 10-5 SECONDARY FIFO THRESHOLD

Value = (Number of secondary FIFO slots)/F

where F = 1 if the secondary stream is using the 64-slot FIFO and F=4 if the secondary stream is using the 204-slot FIFO.

When the secondary FIFO empties down to this value, an internal signal is generated requesting re-filling of the secondary FIFO. This value must be less than or equal to the secondary stream FIFO size specified in bits 4-0.

Bits 16-11 PRIMARY FIFO THRESHOLD

Value = (Number of primary FIFO slots)/F

where F = 1 if the primary stream is using the 64-slot FIFO and F=4 if the primary stream is using the 204-slot FIFO.

When the primary FIFO empties down to this value, an internal signal is generated requesting re-filling of the primary FIFO. This value must be less than or equal to the primary stream FIFO size specified in bits 4-0.

Bits 31-17 Reserved

Primary Stream Window Start Coordinates Register (MM81F0)

Read/Write Address: 81F0H
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>PFT</td>
</tr>
</tbody>
</table>

Bits 10-0 PRIMARY STREAM Y-START

Value = Screen line number +1 of the first line of the primary stream window

Bits 15-11 Reserved
Bits 26-16 PRIMARY STREAM X-START
Value = Screen pixel number +1 of the first pixel of the primary stream window

Bits 31-27 Reserved

Primary Stream Window Size Register (MM81F4)

Read/Write Address: 81F4H BCI: BDH
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bits 10-0 PRIMARY STREAM HEIGHT
Value = Number of lines displayed in the primary stream window

Bits 15-11 Reserved

Bits 26-16 PRIMARY STREAM WIDTH
Value = Number of pixels -1 displayed in each line in the primary stream window

Bits 31-27 Reserved

Secondary Window Start Coordinates Register (MM81F8)

Read/Write Address: 81F8H BCI: BEH
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bits 10-0 SECONDARY STREAM Y-START
Value = Screen line number +1 of the first line of the secondary stream window

Bits 15-11 Reserved

Bits 26-16 SECONDARY STREAM X-START
Value = Screen pixel number +1 of the first pixel of the secondary stream window

Bits 31-27 Reserved
Secondary Window Size (MM81FC)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 10-0 SECONDARY STREAM HEIGHT

Value = Number of lines displayed in the secondary stream window

Bits 15-11 Reserved

Bits 26-16 SECONDARY STREAM WIDTH

Value = Number of pixels -1 displayed in each line in the primary stream window

Bits 31-27 Reserved

Primary Stream FIFO Monitoring 0 Register (MM8200)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bits 7-0 PRIMARY STREAM FIFO LOW WATERMARK

Value = # of entries in the primary stream FIFO

When the number of FIFO entries is less than this value, the Lower Counter value (MM8210_15-0) is incremented by one at each FIFO read strobe.

Bits 15-0 Reserved

Bits 23-16 PRIMARY STREAM FIFO HIGH WATERMARK

Value = # of entries in the primary stream FIFO

When the number of FIFO entries is greater than this value, the Higher Counter value (MM8210_31_16) is incremented by one at each FIFO write strobe.

Bits 31-24 Reserved
Secondary Stream FIFO Monitoring 0 Register (MM8204)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- **Bits 7-0**: Value = # of entries in the secondary stream FIFO
 - When the number of FIFO entries is less than this value, the Lower Counter value (MM8214_15-0) is incremented by one at each FIFO read strobe.
- **Bits 15-0**: Reserved
- **Bits 23-16**: Value = # of entries in the secondary stream FIFO
 - When the number of FIFO entries is greater than this value, the Higher Counter value (MM8214_31_16) is incremented by one at each FIFO write strobe.
- **Bits 31-24**: Reserved

Secondary Stream Frame Buffer Cb Block Address Register (MM8208)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- **Bits 24-0**: Value = Secondary stream frame buffer Cb block starting address
 - This value must be quadword aligned.
- **Bits 31-25**: Reserved
Secondary Stream Frame Buffer Cr Block Address Register (MM820C)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 820CH</th>
<th>BCI: C3H</th>
</tr>
</thead>
</table>

Power-on Default: Undefined

In YCbCr420 mode, this is the buffer address for the Cr data. Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SECONDARY BUFFER Cr BLOCK ADDRESS

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bits 24-0

SECONDARY BUFFER Cr BLOCK ADDRESS

Value = Secondary stream frame buffer Cr block starting address

This value must be quadword aligned.

Bits 31-25

Reserved

Primary Stream FIFO Monitoring 1 Register (MM8210)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 8210H</th>
<th>BCI: C4H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power-on Default: 00000000H</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PRIMARY STREAM FIFO LOWER COUNTER

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bits 15-0

PRIMARY STREAM FIFO LOWER COUNTER

Value = The number of primary stream FIFO read strobes that occurred when the number of FIFO entries was less than the low watermark specified in MM8200_7-0

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.

Bits 31-16

PRIMARY STREAM FIFO HIGHER COUNTER

Value = The number of primary stream FIFO write strobes that occurred when the number of FIFO entries was greater than the high watermark specified in MM8200_23-16

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.

Secondary Stream FIFO Monitoring 1 Register (MM8214)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 8214H</th>
<th>BCI: C5H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power-on Default: 00000000H</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SECONDARY STREAM FIFO LOWER COUNTER

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bits 15-0

SECONDARY STREAM FIFO LOWER COUNTER

Value = The number of secondary stream FIFO read strobes that occurred when the number of FIFO entries was less than the low watermark specified in MM8204_7-0

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.
Bits 31-16 SECONDARY STREAM FIFO HIGHER COUNTER

Value = The number of secondary stream FIFO write strobes that occurred when the number of FIFO entries was greater than the high watermark specified in MM8204_23-16

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.

Secondary Stream Cb/Cr Blocks Stride Register (MM8218)

Read/Write Address: 8218H BCI: C6H
Power-on Default: Undefined

In YCbCr420 mode, this register defines the strides for the Cb and Cr blocks. Updating of this register is controlled via CR66_4 and CR51_7.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

SUBPICT HORIZ TILING OFFSET (QWORDS) SUBPIC VT OFFSET SUBPIC HT OFFSET

Bits 12-0 SECONDARY STREAM STRIDE

Value = byte offset of vertically adjacent pixels in the secondary stream buffer(s)

If double or triple buffering is used, the stride must be the same for all buffers.

Bits 15-13 Reserved

Bits 19-16 SUBPICTURE HORIZONTAL TILING OFFSET

Value = Offset from horizontal tile boundary in tiles of the secondary stream subpicture

Bits 23-20 SUBPICTURE VERTICAL TILING OFFSET

Value = Offset from vertical tile boundary in lines of the secondary stream subpicture

Bits 31-24 SUBPICTURE HORIZONTAL TILING OFFSET (QWORDS) (Rev. B)

Value = Offset from horizontal tile boundary in QWORDs of the secondary stream subpicture

This field provides the same information (except for the units) as bits 19-16 of this register.

Primary Stream Frame Buffer Size Register (MM8300)

Read/Write Address: 8300H BCI: C7H
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

SWB EB23 PS FRAME BUFF SIZE

Bits 21-0 PRIMARY STREAM FRAME BUFFER SIZE

20-bit Value = # of QWords -1 allocated in the frame buffer for the primary stream
Bit 22 EB23 - Enable Bit 23
0 = Write blocking disabled
1 = Enable function of bit 23 of this register (software control of write blocking)

The power-on default value is 0. Write blocking can also be enabled via a BCI QueuedPageFlip command if this bit is cleared to 0.

Bit 23 SWB - Software Control of Write Blocking
0 = Write blocking disabled
1 = Write blocking enabled

Bit 22 of the register must be set to 1 for this to be effective. The power-on default value is 0.

Bits 31-24 Reserved

Secondary Stream Frame Buffer Size Register (MM8304)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>SECONDARY STREAM FRAME BUFFER SIZE</td>
</tr>
<tr>
<td>22</td>
<td>SST - Secondary Stream Type</td>
</tr>
</tbody>
</table>

Bits 31-24 Reserved

Secondary Stream Frame Buffer Address 2 Register (MM8308)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>SECONDARY BUFFER ADDRESS 2</td>
</tr>
</tbody>
</table>

Bits 31-25 Reserved
Section 9: LPB/VIP Register Descriptions

LPB/VIP registers can only be accessed via memory-mapped I/O. The register identifier MMxxxx means that the register is memory mapped at offset 000 xxxxH from the base address.

<table>
<thead>
<tr>
<th>LPB Mode Register (MMFF00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: FF00H</td>
</tr>
<tr>
<td>Power-on Default: 00000000H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDT</td>
<td>R</td>
<td>LBA</td>
<td>R</td>
<td>R</td>
<td>LHS</td>
<td>LVS</td>
<td>OSA</td>
<td>CHD</td>
<td>CBS</td>
<td>SF</td>
<td>LR</td>
<td>LPB MODE</td>
<td>LE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>RIE</td>
<td>OEII</td>
<td>OEI</td>
<td>VI</td>
<td>ILT</td>
<td>SNO</td>
<td>R</td>
<td>VFT</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 - LE - LPB Enable
- 0 = LPB Disabled
- 1 = LPB Enabled

Once enabled, the LPB is reset either by a system reset or via bit 4 of this register.

Bits 3-1 - LPB MODE
- 010 = Video 8 mode. 8-bit video decoder input.
- 110 = VIP mode. 8-bit video or MPEG-2 decoder input.

All other values are reserved.

Bit 4 - LR - LPB Reset
- 0 = No effect
- 1 = Reset LPB

This bit should be set and then reset before switching between LPB modes.

Bit 5 - SF - Skip Frames
- 0 = Write all received frames to memory
- 1 = Write every other received frame to memory (1, 3, etc.)

Bit 6 - CBS - Color Byte Swap
- 0 = Incoming video is in Cb, Y, Cr, Y format
- 1 = Incoming video is in Y, Cb, Y, Cr format

This bit does not affect VBI data.

Bit 7 - CHD - Compatible Horizontal Decimation Type
- 0 = Trio64+—type decimation (byte)
- 1 = Trio64V2-type decimation

This bit is effective when MMFF_15 = 0.

Bit 8 - OSA - Omit Stride Add
- 0 = Add stride to the end of the line
- 1 = Don’t add stride to the end of the line

This bit is not needed to generate contiguous video capture data in the frame buffer.

Bit 9 - LVS - LPB Vertical Sync Input Polarity
- 0 = LPB vertical sync input is active low
- 1 = LPB vertical sync input is active high

Bit 10 - LHS - LPB Horizontal Sync Input Polarity
- 0 = LPB horizontal sync input is active low
- 1 = LPB horizontal sync input is active high
LPB/VIP Registers

<table>
<thead>
<tr>
<th>Bits 12-11</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 13</td>
<td>LBA - Load Base Address (Write Only)</td>
</tr>
<tr>
<td></td>
<td>Writing a 1 to this bit immediately loads the base address currently being pointed to.</td>
</tr>
<tr>
<td>Bit 14</td>
<td>Reserved</td>
</tr>
<tr>
<td>Bit 15</td>
<td>HDT - Horizontal Decimation Type Select</td>
</tr>
<tr>
<td></td>
<td>0 = Use MMFF00_7 to select horizontal decimation type</td>
</tr>
<tr>
<td></td>
<td>1 = Use MMFF78_31 to select horizontal decimation type</td>
</tr>
<tr>
<td>Bits 19-16</td>
<td>Reserved</td>
</tr>
<tr>
<td>Bit 20</td>
<td>Reserved</td>
</tr>
<tr>
<td>Bits 23-21</td>
<td>VFT - Video FIFO Threshold</td>
</tr>
<tr>
<td>00</td>
<td>0 = 1 FIFO slot</td>
</tr>
<tr>
<td>001</td>
<td>2 FIFO slots</td>
</tr>
<tr>
<td>010</td>
<td>4 FIFO slots</td>
</tr>
<tr>
<td>011</td>
<td>6 FIFO slots</td>
</tr>
<tr>
<td>100</td>
<td>8 FIFO slots</td>
</tr>
<tr>
<td>101</td>
<td>16 FIFO slots</td>
</tr>
<tr>
<td>110</td>
<td>24 FIFO slots</td>
</tr>
<tr>
<td>111</td>
<td>30 FIFO slots</td>
</tr>
<tr>
<td></td>
<td>When this many slots are filled in the video FIFO, a request is generated to the memory manager to begin emptying the FIFO. This is used to maximize the efficiency of the memory interface. Each slot holds 2 DWords.</td>
</tr>
<tr>
<td>Bit 24</td>
<td>Reserved</td>
</tr>
<tr>
<td>Bit 25</td>
<td>SNO - Sync Non-Overlap</td>
</tr>
<tr>
<td>0</td>
<td>No effect</td>
</tr>
<tr>
<td>1</td>
<td>Don't add stride after first HSYNC</td>
</tr>
<tr>
<td></td>
<td>This bit must be set when the first HSYNC does not occur within the VSYNC active period.</td>
</tr>
<tr>
<td>Bit 26</td>
<td>ILC - Invert LCLK</td>
</tr>
<tr>
<td>0</td>
<td>Use LCLK as received</td>
</tr>
<tr>
<td>1</td>
<td>Invert the LCLK input</td>
</tr>
<tr>
<td>Bit 27</td>
<td>OES - Odd/Even Detect Select</td>
</tr>
<tr>
<td>0</td>
<td>Bit 28 status based on interpretation of sync signals</td>
</tr>
<tr>
<td>1</td>
<td>Bit 28 status based on ODDIN pin input</td>
</tr>
<tr>
<td>Bit 28</td>
<td>OEI - Odd/Even Field Indicator (Read Only)</td>
</tr>
<tr>
<td>0</td>
<td>Odd field being processed</td>
</tr>
<tr>
<td>1</td>
<td>Even field being processed</td>
</tr>
<tr>
<td>Bit 29</td>
<td>OEII - Odd/Even Field Indicator Invert</td>
</tr>
<tr>
<td>0</td>
<td>Odd/even field indicator as specified by bit 28 of this register</td>
</tr>
<tr>
<td>1</td>
<td>Odd/even field definition is inverted from that specified by bit 28 of this register</td>
</tr>
<tr>
<td>Bit 30</td>
<td>RIE - Reinterlacing Enable</td>
</tr>
<tr>
<td>0</td>
<td>Reinterlacing disabled</td>
</tr>
<tr>
<td>1</td>
<td>Reinterlacing enabled</td>
</tr>
<tr>
<td>Bit 31</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
LPB FIFO Status Register (MMFF04)

Read Only
Address: FF04H
Power-on Default: 00000008H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWPS</td>
<td>OFAE</td>
<td>OFE</td>
<td>OFF</td>
<td>ORPS</td>
<td>OWPS</td>
<td>VFF</td>
<td>OFIFO STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>VRPS</td>
<td>V0A</td>
<td>V0E</td>
<td>FDM</td>
<td>VDD</td>
<td>VWPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 3-0 LPB Output FIFO Status
0000 = 0 FIFO slots free
0001 = 1 FIFO slot free
0010 = 2 FIFO slots free
0011 = 3 FIFO slots free
0100 = 4 FIFO slots free
0101 = 5 FIFO slots free
0110 = 6 FIFO slots free
0111 = 7 FIFO slots free
1000 = 8 FIFO slots free
Each slot contains 4 bytes

Bit 4 VFF - Video FIFO Flush
0 = No video FIFO flush
1 = Video FIFO flush in process

Bits 7-5 OWPS - LPB Output FIFO Write Pointer Status
Value = Write pointer status

Bits 10-8 ORPS - LPB Output FIFO Read Pointer Status
Value = Read pointer status
Bit 11 OFF - LPB Output FIFO Full
0 = Output FIFO not full
1 = Output FIFO full

Bit 12 OFE - LPB Output FIFO Empty
0 = Output FIFO not empty
1 = Output FIFO empty

Bit 13 OFAE - LPB Output FIFO Almost Empty
0 = Output FIFO has something other than 1 slot filled
1 = Output FIFO has one slot filled

Bits 18-14 VWPS - LPB Video FIFO Write Pointer Status
Value = Write pointer status

Bit 19 VDD - VIP Device Detect
0 = No VIP device detected at reset
1 = VIP device detected at reset

Bit 20 V0F - LPB Video FIFO Full
0 = Video FIFO 0 not full
1 = Video FIFO 0 full

Bit 21 V0E - LPB Video FIFO Empty
0 = Video FIFO 0 not empty
1 = Video FIFO 0 empty

Bit 22 V0AE - LPB Video FIFO Almost Empty
0 = Video FIFO 0 has something other than 1 slot filled
1 = Video FIFO 0 has one slot filled

Bits 27-23 VRPS - LPB Video FIFO Read Pointer Status
Value = Read pointer status
Savage4

LPB VIP Registers

Bits 31-28 Reserved

LPB Interrupt Flags Register (MMFF08)

Read/Write Address: FF08H
Power-on Default: 00000000H

Note that bit 31 is read only.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>FEI - LPB Output FIFO Empty Interrupt Status</td>
<td>0 = No interrupt, 1 = LPB output FIFO empty</td>
</tr>
<tr>
<td>14</td>
<td>ELI - End of Line Interrupt Status</td>
<td>0 = No interrupt, 1 = HSYNC input received</td>
</tr>
<tr>
<td>13</td>
<td>EFI - End of Frame Interrupt Status</td>
<td>0 = No interrupt, 1 = VSYNC input received</td>
</tr>
<tr>
<td>12</td>
<td>SPS - Serial Port Start Detect Interrupt Status</td>
<td>0 = No interrupt, 1 = Serial port start condition detected</td>
</tr>
<tr>
<td>11</td>
<td>VI - VBI Interrupt Status</td>
<td>0 = No interrupt, 1 = Start of live video detected</td>
</tr>
<tr>
<td>10</td>
<td>VT - VIP Timeout Interrupt Status</td>
<td>0 = No interrupt, 1 = VIP timeout detected</td>
</tr>
<tr>
<td>9</td>
<td>VTM</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>SPW</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>VIE</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>EB1E</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>EB0E</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>ODE</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>SPM</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>EFM</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>ELM</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>FEM</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bit 0 - FEI - LPB Output FIFO Empty Interrupt Status
0 = No interrupt
1 = LPB output FIFO empty

Writing a 1 to this bit clears the interrupt.

Bit 1 - ELI - End of Line Interrupt Status
0 = No interrupt
1 = HSYNC input received

Writing a 1 to this bit clears the interrupt.

Bit 2 - EFI - End of Frame Interrupt Status
0 = No interrupt
1 = VSYNC input received

Writing a 1 to this bit clears the interrupt.

Bit 3 - SPS - Serial Port Start Detect Interrupt Status
0 = No interrupt
1 = Serial port start condition detected

A serial port start condition occurs when SPD is driven low by another device while SPCLK is not being driven low.
Writing a 1 to this bit clears the interrupt.

Bits 6-4 - Reserved

Bit 7 - VI - VBI Interrupt Status
0 = No interrupt
1 = Start of live video detected

Writing a 1 to this bit clears the interrupt.

Bit 8 - Reserved

Bit 9 - VT - VIP Timeout Interrupt Status
0 = No interrupt
1 = VIP timeout detected

Bits 15-10 - Reserved

Bit 16 - FEM - LPB Output FIFO Empty Interrupt Enable Mask
0 = LPB output FIFO empty interrupt disabled
1 = LPB output FIFO empty interrupt enabled

Bit 17 - ELM - End of Line Interrupt Enable Mask
0 = End of Line interrupt disabled
1 = End of Line interrupt enabled

Bit 18 - EFM - End of Frame Interrupt Enable Mask
0 = End of frame interrupt disabled
1 = End of frame interrupt enabled
Bit 19 SPM - Serial Port Start Detect Interrupt Mask
0 = Serial port start detect interrupt disabled
1 = Serial port start detect interrupt enabled
Bit 20 FDM - Decimation Field Drop Interrupt Enable Mask
0 = Decimation field drop interrupt disabled
1 = decimation field drop interrupt enabled
Bit 21 EB0E - Encoding Buffer 0 Interrupt Enable Mask
0 = Encoding buffer 0 interrupt disabled
1 = Encoding buffer 0 interrupt enabled
Bit 22 EB1E - Encoding Buffer 1 Interrupt Enable Mask
0 = Encoding buffer 1 interrupt disabled
1 = Encoding buffer 1 interrupt enabled
Bit 23 VIE - VBI Interrupt Enable Mask
0 = VBI interrupt disabled
1 = VBI interrupt enabled
Bit 24 SPW - Serial Port Wait
0 = Release SPCLK to float high
1 = Drive SPCLK low upon receipt of a serial port start condition
Setting this bit to 1 enables serial port wait states until the Host is ready to process the data.
Bit 25 VTM - VIP Timeout Interrupt Mask
0 = VIP timeout interrupt disabled
1 = VIP timeout interrupt enabled
Bit 30-26 Reserved
Bit 31 VI - VSYNC Indicator (Read Only)
0 = Active region for live video
1 = Vertical blanking region for live video (VSYNC active)

LPB Frame Buffer Address 0 Register (MMFF0C)
Read/Write
Address: FF0CH
Power-on Default: 00000000H

| Bits 24-0 | LPB Frame Buffer Address 0
Value = starting address 0 (offset in bytes from the start of the frame buffer) for writing LPB data to the frame buffer
If live video mirroring is enabled (MMFF00_31 = 1), the address must be for the end of the first line.
This value will normally be the same as the secondary stream frame buffer address 0. The value must start on an 8-byte boundary. A value programmed in this field does not take effect until the next LPB VSYNC.
Bits 31-25 Reserved
LPB Frame Buffer Address 1 Register (MMFF10)

Read/Write Address: FF10H
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

LPB BUFFER ADDRESS 1

Bits 24-0 LPB Frame Buffer Address 1

Value = starting address 1 (offset in bytes from the start of the frame buffer) for writing LPB data to the frame buffer.

If live video mirroring is enabled (MMFF00_31 = 1), the address must be for the end of the first line.

This value will normally be the same as the secondary stream frame buffer address 1. Both address 0 and address 1 are defined when double buffering is used. The value must start on an 8-byte boundary. A value programmed in this field does not take effect until the next LPB VSYNC.

Bits 31-25 Reserved

VIP Control Register (MMFF14)

Read/Write Address: FF14H
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

VIP READ/WRITE ADDRESS

Bits 11-0 VIP READ/WRITE ADDRESS

Value = Address of the VIP device register or FIFO to be accessed.

Register addresses use bits 11-0. FIFO addresses use bits 11-8.

Bits 13-12 VC - VIP Read/Write Command

00 = Register write
01 = FIFO write
10 = Register read
11 = FIFO read (FIFO ports 0 and 1 status only)

Bits 15-14 VDS - VIP Device Select

00 = MPEG decoder
01 = Video decoder
10 = Reserved
11 = Reserved

Bits 19-16 Reserved

Bits 21-20 VFW - VIP FIFO Write Burst Length

00 = 4 bytes
01 = 8 bytes
10 = 12 bytes
11 = 16 bytes

Bits 23-22 VRR - VIP Register Read/Write Burst Length

00 = 1 byte
01 = 2 bytes
10 = 3 bytes
11 = 4 bytes (register write only)
LPB/VIP Registers

VIP Read/Write Data Register (MMFF18)

Read/Write Address: FF18H
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

VIP READ/WRITE DATA

Bits 31-0 VIP READ/WRITE DATA

A write to this register triggers a read/write sequence based on the address information in MMFF14_11-0 for registers or 11-8 for FIFOs and the burst setting. The first byte in a burst uses bits 7-0, the second uses bits 15-8, etc.

Serial Port 1 Register (MMFF20)

Read/Write Address: FF20H
Power-on Default: 00000000H

Bits 4-0 of this register can also be accessed via CRA0_4-0. This register is normally used for I2C communications.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bit 0
SCW - Serial Clock Write

0 = SPCLK1 is driven low
1 = SPCLK1 is tri-stated

SPCLK1 carries the I2C clock. When the SPCLK1 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 2 of this register.

Bit 1
SDW - Serial Data Write

0 = SPD1 pin is driven low
1 = SPD1 pin is tri-stated

SPD1 carries the I2C data. When the SPD1 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 3 of this register.

Bit 2
SCR - Serial Clock Read (Read Only)

0 = SPCLK1 is low
1 = SPCLK1 is tri-stated (no device is driving this line)

Bit 3
SDR - Serial Data Read (Read Only)

0 = SPD1 pin is low
1 = SPD1 pin is tri-stated (no device is driving this line)

Bit 4
SPE - Serial Port 1 Enable

0 = Use of bits 1-0 of this register disabled
1 = Use of bits 1-0 of this register enabled

Bits 31-5 Reserved
LPB Video Input Window Size Register (MMFF24)

Read/Write Address: FF24H
Power-on Default: Undefined

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

 VIDEO INPUT LINE WIDTH

Bits 11-0: VIDEO INPUT LINE WIDTH

Value = [Width in bytes of each video line] - 1

This is the width of the displayed line after the offset specified in MMFF28_11-0. Before the 1 is subtracted in Video 8 mode, the number of pixels must be rounded up to a multiple of 2.

Bits 15-12: Reserved

Bits 27-16: VIDEO INPUT WINDOW HEIGHT

Value = [height in lines of each video input frame] - 1

This is the number of displayed lines - 1 after the offset specified in MMFF28_24_16.

Bits 31-28: Reserved

LPB Video Data Offsets Register (MMFF28)

Read/Write Address: FF28H
Power-on Default: Undefined

This register applies only to Video 8 mode

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

 HORIZONTAL VIDEO DATA OFFSET

Bits 11-0: HORIZONTAL VIDEO DATA OFFSET

Value = [number of LCLKs between HSYNC and the start of valid pixel data] - 2

Bits 15-12: Reserved

Bits 27-16: VERTICAL VIDEO DATA OFFSET

Value = number of HSYNCs between VSYNC and the first valid data line

This value must be at least 1.

Bits 31-28: Reserved
LPB Horizontal Decimation Control Register (MMFF2C)

Read/Write Address: FF2CH
Power-on Default: Undefined

Four different horizontal decimation schemes are provided. MMFF00_15 = 0 means that MMFF00_7 selects the decimation scheme. MMFF00_15 = 1 means that MMFF78_31 selects the decimation scheme.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

VIDEO DATA MASK

Bits 31-0 VIDEO DATA MASK (MMFF00_15 = 0)

Each 32 bytes of video data input is compared with this mask. If a bit in this mask is 1, the corresponding byte is discarded. If a bit is a 0, the corresponding byte is passed to the video memory. Normally, decimation starts with bit 0 after an HSYNC. If a horizontal video data offset is specified in MMFF28_11-0, decimation aligns with the start of data after the offset.

Bits 31-0 VIDEO DATA MASK (MMFF00_15 = 1)

Each Y component of 32 YU or YV pairs is compared with this mask. A 0 specifies that the corresponding Y be kept and a 1 specifies that the corresponding Y be dropped. The number of 0's must be either 0 or a multiple of 4. Kept Y's are paired sequentially, with each Y pair being assigned the UV pair associated with the first Y of the pair.

LPB Vertical Decimation Control Register (MMFF30)

Read/Write Address: FF30H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

VIDEO DATA LINE MASK

Bits 31-0 VIDEO DATA LINE MASK

Each 32 lines of video data input is compared with this mask. If a bit in the mask is 0, the corresponding line is passed to video memory. If a bit is a 1, the corresponding line is discarded. If a data offset is specified in MMFF28_24-16, decimation aligns with the starting line after the offset.

LPB Line Stride Register (MMFF34)

Read/Write Address: FF34H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

LINE STRIDE

Bits 12-0 LINE STRIDE

Value = byte offset of vertically adjacent pixels

This offset is added to the line starting address each HSYNC to get the new line starting address. Each line must begin on an 8-byte boundary.
LPB Frame Buffer Address 2 Register (MMFF38)

Read/Write
Address: FF38H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bits 24-0
LPB BUFFER ADDRESS 2

Value = starting address 0 (offset in bytes from the start of the frame buffer) for writing LPB data to the frame buffer.

If live video mirroring is enabled (MMFF00_31 = 1), the address must be for the end of the first line.
This value will normally be the same as the secondary stream frame buffer address 2 and is used only for triple buffering. The value must start on an 8-byte boundary. A value programmed in this field does not take effect until the next LPB VSYNC.

Bits 31-25
Reserved

LPB Output FIFO Register (MMFF40)

Read/Write
Address: FF40H, FF44H...,FF5CH
Power-on Default: 00000000H

Writes to any of the addresses in this 8 doubleword address range will be transferred to the LPB output FIFO. This allows efficient use of the MOVSD assembly language instruction. Accesses must be to doubleword addresses.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bits 31-0
OUTPUT FIFO DATA

Note: Software must never transfer more compressed data than there is room for in the output FIFO. This information is read from MMFF04_3-0.

Bilinear Decimation 1 Register (MMFF70)

Read/Write
Address: FF70H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0
SOURCE WINDOW WIDTH

Value = Source window width in pixels (Ws)
Bits 23-12 DESTINATION WINDOW WIDTH

Value = Destination window width in pixels (Wd)

Bits 31-24 Reserved

LPB Bilinear Decimation 2 Register (MMFF74)

Read/Write Address: FF74H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER FACTOR</td>
<td>DECIMAL DECIMATION FACTOR</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>INTEGER DECIMATION FACTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 DECIMAL DECIMATION FACTOR

Value = Decimal value of Ws/Wd (bilinear)

Value = Decimal value of (Ws/Wd)/2 (quadlinear)

See MMFF70 for the definitions of Ws and Wd. For example, if Ws = 640 and Wd = 260, Ws/Wd = 2.461538461538. The integer value (2) is programmed in bits 23-12 and the decimal value (461538461538) is programmed in bits 11-0.

Bits 23-12 INTEGER DECIMATION FACTOR

Value = Integer value of Ws/Wd

Bits 31-24 Reserved

LPB Bilinear Decimation 3 Register (MMFF78)

Read/Write Address: FF78H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET INTEGER VALUE</td>
<td>OFFSET DECIMAL VALUE</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>QDE</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>OFFSET INTEGER VALUE = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 OFFSET DECIMAL VALUE

Value = Decimal value of the offset for starting the line decimation

The offset value must be less than or equal to 0.5. This can be used to improve the selection of pixels for decimation.

Bits 23-12 OFFSET INTEGER VALUE

Value = Integer value of the offset for starting the line decimation

This value must be all 0's.

Bits 30-24 Reserved

Bit 31 QDE - Quadlinear Decimation Enable

0 = Disable quadlinear decimation
1 = Enable quadlinear decimation
VBI Select Register (MMFF8C)

Read/Write Address: FF8CH
Power-on Default: 00000000H

Only bit 1 of this register is required (and effective) when sliced VBI data is being captured (FFA0_4 = 1).

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBI WIDTH</td>
<td>VBI HEIGHT</td>
<td>VE</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 VE - VBI Enable
0 = VBI data capture disabled
1 = VBI data capture enabled

Bits 5-1 VBI Height

Value = # of data lines to be captured in VBI period

Bits 17-6 VBI Width

Value = [# of bytes in a VBI line] - 1 (8-bit input)
Value = [# of words in a VBI line] - 1 (16-bit input)

This value includes only valid data after the horizontal offset specified in MMFF94_11-0)

Bits 30-18 VBI Stride

Value = QWord-aligned byte offset of vertically adjacent pixels

This must be the same as the line width for contiguous data.

Bit 31 Reserved

VBI Base Address Register (MMFF90)

Read/Write Address: FF90H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBI ADDRESS</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bits 24-0 VBI Base Address

Value = Starting address for writing VBI data to the frame buffer

The address must be quadword aligned.

Bits 31-25 Reserved
VBI Data Offset Register (MMFF94)

Read/Write Address: FF94H
Power-on Default: 00000000H

This register is not effective is sliced VBI data is being captured (MMFFA0_4 = 1).

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>VBI HORIZONTAL DATA OFFSET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VBI VERTICAL DATA OFFSET</td>
<td></td>
</tr>
</tbody>
</table>

Bits 11-0 VBI Horizontal Data Offset
Value = # of character clocks from HSYNC active and the start of valid VBI data

Bits 15-12 Reserved

Bits 24-16 VBI Vertical Data Offset
Value = # of HSYNCs between VSYNC active and the first valid VBI line

Bits 31-25 Reserved

VBI Vertical Decimation Control Register (MMFF98)

Read/Write Address: FF98H
Power-on Default: 00000000H

This register is not effective is sliced VBI data is being captured (MMFFA0_4 = 1).

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VBI DATA LINE MASK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VBI DATA LINE MASK</td>
<td></td>
</tr>
</tbody>
</table>

Bits 31-0 VBI Data Line Mask
If a bit in the mask is 0, the corresponding line is passed to video memory. If a bit is a 1, the corresponding line is discarded.

Bit 31 aligns with the first VBI line to be captured as defined by the vertical data offset.
VBI Control Register (MMFF9C)

Read/Write Address: FF9CH
Power-on Default: 00000000H

This register is not effective is sliced VBI data is being captured (MMFFA0_4 = 1).

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>FFE</td>
<td>DSE</td>
<td>PWE</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>PV</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
</tr>
</tbody>
</table>

Bit 0 Pseudo VBLANK
0 = Do not create and use pseudo VBLANK signal
1 = Create and use pseudo VBLANK signal

This feature is used to provide a vertical blanking signal when one is not provided by the digitizer. When VSYNC is received, VBLANK goes high and stays high for the number of HSYNCs programmed in bits 5-1. When this bit is set, VBI data is captured during the VBLANK period.

Bits 5-1 VBLANK Width
Value = Width of VBLANK signal in HSYNCs

Bits 7-6 Reserved

Bit 8 PWE - Partial Write Enable
0 = Disable partial write of VBI data (less than DWord)
1 = Enable partial write of VBI data (less than DWord)

Setting this bit enables capture of VBI data lines that do not end on a DWord boundary.

Bit 9 DSE - VBI Data Bye Swap Enable
0 = Disable byte swap of VBI data
1 = Enable byte swap of VBI data

When this bit is enabled, the bytes in each DWord are swapped.

Bit 10 FFE - Video FIFO Flush Enable
0 = Disable video FIFO flushing at the end of the VBI line
1 = Enable video FIFO flushing at the end of the VBI line

When this bit is enabled, the video FIFO is flushed at the end of the VBI line or upon receipt of HSYNC, whichever comes first.

Bit 31-11 Reserved
VIP Transfer Control Register (MMFFA0)

Read/Write Address: FFA0H
Power-on Default: 0000000FH

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>VIP TIMEOUT</td>
<td>Value = # of VIP phases</td>
</tr>
<tr>
<td></td>
<td>An interrupt can be generated based on this timeout. See MMFF08_8. The power-on default is 1111b.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VDT - VBI Data Type</td>
<td>0 = Capture raw VBI data (required for Video 8 mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Capture sliced VBI data</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PDS - Slave Power Down Signal</td>
<td>0 = VIP slave device power up signal (VIPCLK running)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = VIP slave device power down signal (VIPCLK turned off)</td>
</tr>
<tr>
<td>7</td>
<td>TB - Task Bit</td>
<td>0 = Task bit = 0 for active video</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Task bit = 1 for active video</td>
</tr>
<tr>
<td>9-8</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>S/2 - Divide SCLK By 2</td>
<td>0 = SCLK undivided</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Divide SCLK by 2 for VIPCLK</td>
</tr>
<tr>
<td>31-11</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>
Section 10: 3D Engine Register Descriptions

All 3D engine registers described below are normally accessed via the BCI. However, they can be directly accessed via memory-mapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address. Registers/bits marked “Global” affect all triangle drawing operations and therefore should be reprogrammed only when the command queue is empty and the 3D engine is idle. Registers/bits marked “Local” can be changed on a triangle by triangle basis without affecting previously specified triangles.

Vertex 0 Z Coordinate Register (MM48508) (Rev. B)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 104 8508H</th>
<th>BCI: 02H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on Default: 00000000H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

VERTEX 0 Z COORDINATE

> Bits 31-0 VERTEX 0 Z COORDINATE

Value = z coordinate expressed in IEEE single precision floating point format

Vertex 1 Z Coordinate Register (MM48528) (Rev B)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 104 8528H</th>
<th>BCI: 0AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on Default: 00000000H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

VERTEX 1 Z COORDINATE

> Bits 31-0 VERTEX 0 Z COORDINATE

Value = z coordinate expressed in IEEE single precision floating point format

Vertex 2 Z Coordinate Register (MM48548) (Rev. B)

<table>
<thead>
<tr>
<th>Read/Write</th>
<th>Address: 104 8548H</th>
<th>BCI: 12H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on Default: 00000000H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

VERTEX 2 Z COORDINATE

> Bits 31-0 VERTEX 2 Z COORDINATE

Value = z coordinate expressed in IEEE single precision floating point format
Z Pixel Offset Register (MM48580) (Rev. A only – Removed from Rev. B)

Read/Write Address: 004 8580H
Power-On Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z PIXEL OFFSET</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
</tr>
</tbody>
</table>

Bits 3-0 Reserved

Bits 31-4 Z PIXEL OFFSET

Value = z pixel offset in 1.8.19 (float)
Flush the front end when this value is changed.

Draw Local Control Register (MM48584)

Read/Write Address: 004 8584H
Power-On Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>BFA</td>
<td>SABM</td>
<td>D-S</td>
<td>DABM</td>
<td>FZ</td>
<td>FW</td>
<td>SS</td>
<td>SM</td>
<td>ZE</td>
</tr>
</tbody>
</table>

Bits 2-0 DABM - Destination Alpha Blend Mode
000 = Zero
001 = One
010 = Source color
011 = 1 - source color
100 = Source alpha
101 = 1 - source alpha
110 = Destination alpha
111 = 1 - destination alpha

Bit 3 D-S - Destination Color - Source Color
0 = Disable
1 = Enable this alpha blending mode (other alpha blending modes are disabled)

Bits 6-4 SABM - Source Alpha Blend Mode
000 = Zero
001 = One
010 = Destination color
011 = 1 - destination color
100 = Source alpha
101 = 1 - source alpha
110 = Destination alpha
111 = 1 - destination alpha

Bit 7 BFA - Binary Final Alpha
0 = Alpha for alpha blending source can be any value between 0-255
1 = Alpha for alpha blending source must be either 0 or 255

Bits 24-8 Reserved
3D Engine Registers

Bit 25
FZ - Force Z Writes Till After Alpha Test
0 = Do Z reads and writes before texture reads
1 = Do Z writes after alpha test

Setting this bit to 1 may require flushing the pixel pipeline between triangles.

Bit 26
DE - Draw Update Enable
0 = Draw update disabled
1 = Draw update enabled

Bit 27
ZE - Z Update Enable
0 = Z update disabled
1 = Z update enabled

Bit 28
SM - Shade Mode
0 = Gouraud
1 = Flat (vertex 2 colors)

Bit 29
SS - Specular Shading Enable
0 = Specular shading disabled
1 = Specular shading enabled

Bit 30
FW - Flush Pending Destination Writes
0 = Do not flush pending destination writes
1 = Flush pending destination writes before doing destination reads for this triangle

If this bit is set, the destination write low watermark (MM485EC_17-12) must be programmed to all 0’s and MM85EC_31-30 must be programmed to 01b.

Bit 31
FZ - Flush Pending Z Writes
1 = Do not flush pending Z writes
1 = Flush pending Z writes before doing Z reads for this triangle

If this bit is set, the Z write low watermark (MM485E8_21-16) must be programmed to all 0’s.

Texture Palette Address Register (MM48588) (Local)

Read/Write
Address: 004 8588H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PALETTE DATA ADDRESS
R R R

Bits 2-0
Reserved

Bits 31-3
PALETTE DATA ADDRESS

Value = QWord-aligned address in memory of the texture palette

This must be a linear address in AGP memory. For frame buffer memory, only bits 25-3 are valid.
Texture 0 Control Register (MM4858C) (Local)

- **Read/Write Address:** 004 858CH
- **Power-on Default:** 00000000H
- **BCI:** 20H

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-0</td>
<td>FILTER MODE</td>
<td>00 = Point sample (1TPP) 01 = Bilinear (4TPP) 10 = Reserved 11 = Trilinear (16TPP)</td>
</tr>
<tr>
<td>Bit 2</td>
<td>Enable MIPmapping</td>
<td>0 = Treat texture as a single map level (if MIPmapped, use level 0 only) 1 = Enable MIPmapping</td>
</tr>
<tr>
<td>Bits 11-3</td>
<td>MIPMAP LEVEL BIAS</td>
<td>Value = Constant offset to MIPmap level (S4.4)</td>
</tr>
<tr>
<td>Bits 15-12</td>
<td>MAX D LEVEL</td>
<td>Value = Maximum D level</td>
</tr>
<tr>
<td>Bits 17-16</td>
<td>TUAM - Texture U Address Mode</td>
<td>00 = Wrap 01 = Clamp 10 = Mirror 11 = Reserved</td>
</tr>
<tr>
<td>Bits 19-18</td>
<td>TVAM - Texture V Address Mode</td>
<td>00 = Wrap 01 = Clamp 10 = Mirror 11 = Reserved</td>
</tr>
<tr>
<td>Bit 20</td>
<td>CC - Color Compare Enable</td>
<td>0 = Disabled 1 = Enabled</td>
</tr>
<tr>
<td>Bit 21</td>
<td>ETT - Enable Texture Transparency</td>
<td>0 = Disable texture transparency 1 = Enable texture transparency</td>
</tr>
<tr>
<td>Bits 23-22</td>
<td>CBAS - Color Blend Alpha Select</td>
<td>00 = TEXTURE ALPHA 01 = DIFFUSE ALPHA 10 = FACTOR ALPHA 11 = CURRENT ALPHA</td>
</tr>
<tr>
<td>Bit 24</td>
<td>CA1 - Color Arg1 Copy Alpha Enable</td>
<td>0 = Disabled 1 = Enabled</td>
</tr>
<tr>
<td>Bit 25</td>
<td>CA2 - Color Arg2 Copy Alpha Enable</td>
<td>0 = Disabled 1 = Enabled</td>
</tr>
<tr>
<td>Bit 26</td>
<td>C1I - Color Arg1 Invert Enable</td>
<td>0 = Disable 1 = Enable</td>
</tr>
</tbody>
</table>
3D Engine Registers

Bit 27 C2I - Color Arg2 Invert Enable
 0 = Disable
 1 = Enable

Bits 29-28 ABAS - Alpha Blend Alpha Select
 00 = TEXTURE ALPHA
 01 = DIFFUSE ALPHA
 10 = FACTOR ALPHA
 11 = CURRENT ALPHA

Bit 30 A1I - Alpha Arg1 Invert Enable
 0 = Disable
 1 = Enable

Bit 31 A2I - Alpha Arg2 Invert Enable
 0 = Disable
 1 = Enable

Texture 1 Control Register (MM48590) (Local)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>MAX D LEVEL</td>
<td>MIPMAP LEVEL BIAS</td>
<td>EM</td>
<td>FILT MODE</td>
<td></td>
</tr>
<tr>
<td>A2I</td>
<td>A1I</td>
<td>ABAS</td>
<td>C2I</td>
<td>C1I</td>
<td>CA2</td>
<td>CA1</td>
<td>CBAS</td>
<td>ETT</td>
<td>CC</td>
<td>TVAM</td>
<td>TUAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 1-0 FILTER MODE
 00 = Point sample (1TPP)
 01 = Bilinear (4TPP)
 10 = Reserved
 11 = Trilinear (16TPP)

Bit 2 Enable MIPmapping
 0 = Treat texture as a single map level (if MIPmapped, use level 0 only)
 1 = Enable MIPmapping

Bits 11-3 MIPMAP LEVEL BIAS
 Value = Constant offset to MIPmap level (S4.4)

Bits 15-12 MAX D LEVEL
 Value = Maximum D level

Bits 17-16 TUAM - Texture U Address Mode
 00 = Wrap
 01 = Clamp
 10 = Mirror
 11 = Reserved

Bits 19-18 TVAM - Texture V Address Mode
 00 = Wrap
 01 = Clamp
 10 = Mirror
 11 = Reserved

Bit 20 CC - Color Compare Enable
 0 = Disabled
 1 = Enabled

Bit 21 ETT - Enable Texture Transparency
 0 = Disable texture transparency
 1 = Enable texture transparency
Bits 23-22 CBAS - Color Blend Alpha Select
00 = TEXTURE ALPHA
01 = DIFFUSE ALPHA
10 = FACTOR ALPHA
11 = CURRENT ALPHA

Bit 24 CA1 - Color Arg1 Copy Alpha Enable
0 = Disabled
1 = Enabled

Bit 25 CA2 - Color Arg2 Copy Alpha Enable
0 = Disabled
1 = Enabled

Bit 26 C1I - Color Arg1 Invert Enable
0 = Disable
1 = Enable

Bit 27 C2I - Color Arg2 Invert Enable
0 = Disable
1 = Enable

Bits 29-28 ABAS - Alpha Blend Alpha Select
00 = TEXTURE ALPHA
01 = DIFFUSE ALPHA
10 = FACTOR ALPHA
11 = CURRENT ALPHA

Bit 30 A1I - Alpha Arg1 Invert Enable
0 = Disable
1 = Enable

Bit 31 A2I - Alpha Arg2 Invert Enable
0 = Disable
1 = Enable

Texture 0 Address Register (MM48594) (Local)

Read/Write Address: 004 8594H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bit 0 TL - Texture Location
0 = Texture is in frame buffer memory
1 = Texture is in AGP memory

Bit 1 Reserved = 1
This bit must always be set to 1 when texture 0 is used.

Bit 2 Reserved

Bits 31-3 TEXTURE DATA ADDRESS
Value = QWord-aligned address in memory of the texture palette
This must be a linear address in system memory. For frame buffer memory, only bits 24-3 are valid.
Texture 1 Address Register (MM48598) (Local)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>TEXTURE DATA ADDRESS</td>
</tr>
<tr>
<td>14</td>
<td>R</td>
</tr>
<tr>
<td>13</td>
<td>R=1</td>
</tr>
<tr>
<td>12</td>
<td>TL</td>
</tr>
<tr>
<td>11</td>
<td>Bit 0: TL - Texture Location</td>
</tr>
<tr>
<td>10</td>
<td>0 = Texture is in frame buffer memory</td>
</tr>
<tr>
<td>9</td>
<td>1 = Texture is in AGP memory</td>
</tr>
<tr>
<td>8</td>
<td>Bit 1: Reserved = 1</td>
</tr>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Bit 2: Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Bits 31-3: TEXTURE DATA ADDRESS</td>
</tr>
<tr>
<td>4</td>
<td>Value = QWord-aligned address in memory of the texture palette</td>
</tr>
<tr>
<td>3</td>
<td>This must be a linear address in system memory.</td>
</tr>
<tr>
<td>2</td>
<td>For frame buffer memory, only bits 24-3 are valid.</td>
</tr>
</tbody>
</table>

Texture 0 Blending Control Register (MM4859C) (Local)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>CAB</td>
</tr>
<tr>
<td>14</td>
<td>CD2</td>
</tr>
<tr>
<td>13</td>
<td>CDB</td>
</tr>
<tr>
<td>12</td>
<td>CAS</td>
</tr>
<tr>
<td>11</td>
<td>CM2</td>
</tr>
<tr>
<td>10</td>
<td>CM1</td>
</tr>
<tr>
<td>9</td>
<td>CPS</td>
</tr>
<tr>
<td>8</td>
<td>Cl2</td>
</tr>
<tr>
<td>7</td>
<td>C1A</td>
</tr>
<tr>
<td>6</td>
<td>CA2</td>
</tr>
<tr>
<td>5</td>
<td>CA1</td>
</tr>
<tr>
<td>4</td>
<td>Bit 1: CA1 - Color Argument 1 Select</td>
</tr>
<tr>
<td>3</td>
<td>0 = TA_TEXTURE</td>
</tr>
<tr>
<td>2</td>
<td>01 = TA_DIFFUSE</td>
</tr>
<tr>
<td>1</td>
<td>10 = TA_FACTOR</td>
</tr>
<tr>
<td>0</td>
<td>11 = TA_CURRENT</td>
</tr>
<tr>
<td>4</td>
<td>Bit 2: CA2 - Color Argument 2 Select</td>
</tr>
<tr>
<td>3</td>
<td>000 = TA_CURRENT</td>
</tr>
<tr>
<td>2</td>
<td>001 = TA_DIFFUSE</td>
</tr>
<tr>
<td>1</td>
<td>010 = TA_FACTOR</td>
</tr>
<tr>
<td>0</td>
<td>011 = TA_SPECULAR</td>
</tr>
<tr>
<td>0</td>
<td>100 = TA_TEXTURE</td>
</tr>
<tr>
<td>5</td>
<td>Bit 5: CIA - Color Invert Alpha Enable</td>
</tr>
<tr>
<td>4</td>
<td>0 = Disabled</td>
</tr>
<tr>
<td>3</td>
<td>1 = Enabled</td>
</tr>
<tr>
<td>6</td>
<td>Bit 6: CI2 - Color Invert Arg2 Enable for Mod1</td>
</tr>
<tr>
<td>5</td>
<td>0 = Disabled</td>
</tr>
<tr>
<td>4</td>
<td>1 = Enabled</td>
</tr>
<tr>
<td>7</td>
<td>Bit 7: CPS - Color Pre-Modulate Select</td>
</tr>
<tr>
<td>6</td>
<td>0 = Select Arg1 input color</td>
</tr>
<tr>
<td>5</td>
<td>1 = Select Arg1 input alpha</td>
</tr>
</tbody>
</table>
Bit 8 CM1 - Color Mod1 Select
0 = Select Arg1
1 = Select zero

Bits 10-9 CM2 - Color Mod2 Select
00 = Select Arg2
01 = Select Alpha
10 = Select 255
11 = Select premod

Bits 12-11 CAS - Color Add Select
00 = Select zero
01 = Select Arg2
10 = Reserved
11 = Select Alpha

Bit 13 CDB - Color Do Blend
0 = No blending
1 = Do blend

Bit 14 CD2 - Color Do 2’s Complement
0 = No 2’s complement
1 = Do 2’s complement

Bit 15 CAB - Color Add Bias -0.5 Enable
0 = Disable
1 = Enable

Bits 17-16 AA1 - Alpha Argument 1 Select
00 = TA_TEXTURE
01 = TA_DIFFUSE
10 = TA_FACTOR
11 = TA_CURRENT

Bits 20-18 AA2 - Alpha Argument 2 Select
000 = TA_CURRENT
001 = TA_DIFFUSE
010 = TA_FACTOR
011 = TA_SPECULAR
100 = TA_TEXTURE

All other values are reserved.

Bit 21 AM1 - Alpha Mod1 Select
0 = Select Arg1
1 = Select zero

Bits 23-22 AM2 - Alpha Mod2 Select
00 = Select Arg2
01 = Select Alpha
10 = Select 255
11 = Select premod

Bit 24 AAS Alpha Add Select
0 = Select zero
1 = Select Arg2

Bit 25 ADB - Alpha Do Blend
0 = No blending
1 = Do blend

Bit 26 AD2 - Alpha Do 2’s Complement
0 = No 2’s complement
1 = Do 2’s complement

Bit 27 CSC - Color Stage Clamping Enable
0 = Disable
1 = Enable
3D Engine Registers

Bit 28
ASC - Alpha Stage Clamping Enable
- 0 = Disable
- 1 = Enable

Bit 29
CDM - Color Do Diffuse Mul
- 0 = No diffuse mul
- 1 = Do diffuse mul

Bits 31-30
CLS - Color Left Shift
- 00 = No shift
- 01 = 2x shift
- 10 = 4x shift
- 11 = Reserved

Texture 1 Blending Control Register (MM485A0) (Local)

Read/Write Address: 004 85A0H 25H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB</td>
<td>CD2</td>
<td>CDB</td>
<td>CAS</td>
<td>CM2</td>
<td>CM1</td>
<td>CPS</td>
<td>CI2</td>
<td>CIA</td>
<td>CA2</td>
<td>CA1</td>
<td>CLS</td>
<td>R</td>
<td>ASC</td>
<td>CSC</td>
<td>AD2</td>
</tr>
</tbody>
</table>

- **Bits 1-0**: CA1 - Color Argument 1 Select
 - 00 = TA_TEXTURE
 - 01 = TA_DIFFUSE
 - 10 = TA_FACTOR
 - 11 = TA_CURRENT

- **Bits 4-2**: CA2 - Color Argument 2 Select
 - 000 = TA_CURRENT
 - 001 = TA_DIFFUSE
 - 010 = TA_FACTOR
 - 011 = TA_SPECULAR
 - 100 = TA_TEXTURE
 - All other values are reserved.

- **Bit 5**: CIA - Color Invert Alpha Enable
 - 0 = Disabled
 - 1 = Enabled

- **Bit 6**: CI2 - Color Invert Arg2 Enable for Mod1
 - 0 = Disabled
 - 1 = Enabled

- **Bit 7**: CPS - Color Pre-Modulate Select
 - 0 = Select Arg1 input color
 - 1 = Select Arg1 input alpha

- **Bit 8**: CM1 - Color Mod1 Select
 - 0 = Select Arg1
 - 1 = Select zero

- **Bits 10-9**: CM2 - Color Mod2 Select
 - 00 = Select Arg2
 - 01 = Select Alpha
 - 10 = Select 255
 - 11 = Select premod

- **Bits 12-11**: CAS - Color Add Select
 - 00 = Select zero
 - 01 = Select Arg2
 - 10 = Reserved
 - 11 = Select Alpha
Bit 13 CDB - Color Do Blend
0 = No blending
1 = Do blend

Bit 14 CD2 - Color Do 2's Complement
0 = No 2's complement
1 = Do 2's complement

Bit 15 CAB - Color Add Bias -0.5 Enable
0 = Disable
1 = Enable

Bits 17-16 AA1 - Alpha Argument 1 Select
00 = TA_TEXTURE
01 = TA_DIFFUSE
10 = TA_FACTOR
11 = TA_CURRENT

Bits 20-18 AA2 - Alpha Argument 2 Select
000 = TA_CURRENT
001 = TA_DIFFUSE
010 = TA_FACTOR
011 = TA_SPECULAR
100 = TA_TEXTURE

All other values are reserved.

Bit 21 AM1 - Alpha Mod1 Select
0 = Select Arg1
1 = Select zero

Bits 23-22 AM2 - Alpha Mod2 Select
00 = Select Arg2
01 = Select Alpha
10 = Select 255
11 = Select premod

Bit 24 AAS Alpha Add Select
0 = Select zero
1 = Select Arg2

Bit 25 ADB - Alpha Do Blend
0 = No blending
1 = Do blend

Bit 26 AD2 - Alpha Do 2's Complement
0 = No 2's complement
1 = Do 2's complement

Bit 27 CSC - Color Stage Clamping Enable
0 = Disable
1 = Enable

Bit 28 ASC - Alpha Stage Clamping Enable
0 = Disable
1 = Enable

Bit 29 Reserved

Bits 31-30 ALS - Alpha Left Shift
00 = No shift
01 = 2x shift
10 = 4x shift
11 = Reserved
Texture Transparent Color Register (MM485A4) (Local)

Read/Write Address: 004 85A4H
Power-on Default: 00000000H
BCI: 26H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TRANSPARENT TEXTURE COLOR 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANSPARENT TEXTURE COLOR 1</td>
<td></td>
</tr>
</tbody>
</table>

Bits 15-0 TRANSPARENT TEXTURE COLOR 0

- Value = RGB565 (if ARGB1555 or ARGB4444 texture convert color to RGB565)
- Value = CLUT1555 or CLUT4444 (8-bit palettized mode)

Each texel color value read from memory is compared with this value. If it matches, the texel is considered to be fully transparent (alpha = 00H). For non-matches, the texel is considered to be opaque (alpha = FFH). This function is not supported in other modes. The compare enable is MM4858C_21.

Bits 31-16 TRANSPARENT TEXTURE COLOR 1

See the description for bits 15-0. The compare enable is MM48590_21.

Text Description Register (MM485A8) (Local)

Read/Write Address: 004 85A8H
Power-on Default: 00000000H
BCI: 27H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEXTURE 1 WIDTH</td>
<td>TEXTURE 0 FORMAT</td>
</tr>
<tr>
<td></td>
<td>LTP</td>
<td>TPS</td>
</tr>
</tbody>
</table>

Bits 3-0 TEXTURE 0 WIDTH

- Value = n

where the texture width is 2**n. The maximum n allowed is 11 (width = 2048)

Bits 7-4 TEXTURE 0 HEIGHT

- Value = n

where the texture height is 2**n. The maximum n allowed is 11 (height = 2048)
Bits 11-8 TEXTURE 0 FORMAT
0000 = 4 bits/texel S3TC (block truncation coded)
0001 = 8 bits/texel color index. Palette entry format is RGB565. Palette table required.
0010 = 8 bits/texel color index. Palette entry format is ARGB1555. Palette table required.
0011 = 32 bits/texel ARGB8888
0100 = 16 bits/texel ARGB1555
0101 = 16 bits/texel ARGB4444
0110 = 16 bits/texel RGB565
0111 = 8 bits/texel color index. Palette entry format is ARGB4444. Palette table required.
1000 = 8-bit S3TC format with 4-bit alpha followed by 4-bit S3TC color
1001 = 8-bit S3TC format with 4-bit S3TC alpha followed by 4-bit S3TC color
1010 = 4-bit S3TC format without alpha - L4, duplicate color, put alpha = FFH
1011 = 8-bit S3TC format with 4-bit alpha - A4L4, duplicate color
1100 = Luminance texture - L8, duplicate color, put alpha = FFH
1101 = Luminance alpha texture - A4L4, duplicate color and alpha
1110 = Intensity texture - L8, duplicate color and alpha
1111 = Alpha texture - A8, all colors set to FFH except alpha

Bits 15-12 TEXTURE 1 WIDTH
Value = n
where the texture width is 2^n. The maximum n allowed is 11 (width = 2048)

Bits 19-16 TEXTURE 1 HEIGHT
Value = n
where the texture height is 2^n. The maximum n allowed is 11 (height = 2048)

Bits 23-20 TEXTURE 1 FORMAT
0000 = 4 bits/texel S3TC (block truncation coded)
0001 = 8 bits/texel color index. Palette entry format is RGB565. Palette table required.
0010 = 8 bits/texel color index. Palette entry format is ARGB1555. Palette table required.
0011 = 32 bits/texel ARGB8888
0100 = 16 bits/texel ARGB1555
0101 = 16 bits/texel ARGB4444
0110 = 16 bits/texel RGB565
0111 = 8 bits/texel color index. Palette entry format is ARGB4444. Palette table required.
1000 = 8-bit S3TC format with 4-bit alpha followed by 4-bit S3TC color
1001 = 8-bit S3TC format with 4-bit S3TC alpha followed by 4-bit S3TC color
1010 = 4-bit S3TC format without alpha - L4, duplicate color, put alpha = FFH
1011 = 8-bit S3TC format with 4-bit alpha - A4L4, duplicate color
1100 = Luminance texture - L8, duplicate color, put alpha = FFH
1101 = Luminance alpha texture - A4L4, duplicate color and alpha
1110 = Intensity texture - L8, duplicate color and alpha
1111 = Alpha texture - A8, all colors set to FFH except alpha

Bit 24 TBL - Texture Blending Loop Enable
0 = Disabled
1 = Enabled

Bit 25 T0 - Texture 0 Enable
0 = Disabled
1 = Enabled

Bit 26 T1 - Texture 1 Enable
0 = Disabled
1 = Enabled
Bit 27 PD - Perspective Correction Disable
0 = Enabled
1 = Disabled

Setting this bit disables perspective correction by forcing the W value used by the hardware to always be 1. This bit is reserved in Rev. B (no disable for perspective correction).

Bit 28 DF - Use D Fraction for Alpha
0 = Disabled
1 = Enabled

MipMapping must be enabled before this is enabled.

Bits 30-29 TPS - Texture Palette Size
00 = 64 entries (16 QWords)
01 = 128 entries (32 QWords)
10 = 192 entries (48 QWords)
11 = 256 entries (64 QWords)

Bit 31 LTP - Load Texture Palette
0 = No effect
1 = Load new texture palette

Fog Table 0-7 Registers (MM485AC - MM485C8) (Global)

Read/Write Address: See below.
Power-on Default: 00000000H

There are 8 Fog Table registers, each with the same definition given below. The register addresses are:

<table>
<thead>
<tr>
<th>Fog Table Register # (n)</th>
<th>MMIO Address (Hex)</th>
<th>BCI Address (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Entries 0-3)</td>
<td>004 85AC</td>
<td>28</td>
</tr>
<tr>
<td>1 (Entries 4-7)</td>
<td>004 85B0</td>
<td>29</td>
</tr>
<tr>
<td>2 (Entries 8-11)</td>
<td>004 85B4</td>
<td>2A</td>
</tr>
<tr>
<td>3 (Entries 12-15)</td>
<td>004 85B8</td>
<td>2B</td>
</tr>
<tr>
<td>4 (Entries 16-19)</td>
<td>004 85BC</td>
<td>2C</td>
</tr>
<tr>
<td>5 (Entries 20-23)</td>
<td>004 85C0</td>
<td>2D</td>
</tr>
<tr>
<td>6 (Entries 24-27)</td>
<td>004 85C4</td>
<td>2E</td>
</tr>
<tr>
<td>7 (Entries 28-31)</td>
<td>004 85C8</td>
<td>2F</td>
</tr>
</tbody>
</table>

The definition for each is:

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOG VALUE 4n+1</td>
<td>FOG VALUE 4n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24</th>
<th>23 22 21 20 19 18 17 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOG VALUE 4n+3</td>
<td>FOG VALUE 4n+2</td>
</tr>
</tbody>
</table>

Bits 7-0 FOG VALUE 4n
Value = 8-bit fog value 4n computed from fog parameters
n = Fog table register number

Bits 15-8 FOG VALUE 4n+1
Value = 8-bit fog value 4n+1 computed from fog parameters
n = Fog table register number
Bits 23-16 FOG VALUE 4n+2

Value = 8-bit fog value 4n+2 computed from fog parameters

n = Fog table register number

Bits 31-24 FOG VALUE 4n+3

Value = 8-bit fog value 4n+3 computed from fog parameters

n = Fog table register number

Fog Control Register (MM485CC) (Global)

Read/Write Address: 004 85CCH
Power-on Default: 00000000H
BCI: 30H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

GREEN FOG COLOR

BLUE FOG COLOR

END SHIFT

<table>
<thead>
<tr>
<th>FM</th>
<th>FE</th>
<th>R</th>
<th>TOTAL SHIFT</th>
<th>RED FOG COLOR</th>
</tr>
</thead>
</table>

Bits 7-0 BLUE FOG COLOR

Value = Blue fog color

Bits 15-8 GREEN FOG COLOR

Value = Green fog color

Bits 23-16 RED FOG COLOR

Value = Red fog color

Bit 26-24 TOTAL SHIFT - Fog Table Z Total Shift

Value = Total bit length of shared pattern of Zw

Bit 27 Reserved

Bit 28 FE - Fog Enable

0 = Disable fog
1 = Enable fog

Bit 29 FM - Fog Mode

0 = Use table fog
1 = Use vertex fog parameter

Bit 31-30 END SHIFT - Fog Table Z End Shift

Value = Number of 0's in the shared Zw pattern (max 3)
Stencil Control Register (MM485D0) (Global)

Read/Write Address: 004 85D0H
Power-on Default: 00000000H
BCI: 31H

To use the stencil function, alpha testing must be disabled (MM485E4_31 = 0) and a 24-bit Z-Buffer must be defined and enabled (MM485D8_5 and 31 = 1). The stencil reference value (Sref below) is defined in MM485D8_23-16. The stencil frame buffer value is stored in the upper 8 bits of the 32-bit Z value that is used when 24-bit Z-Buffering is specified.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>STENCIL WRITE MASK</td>
<td>STENCIL READ MASK</td>
<td>SE</td>
<td>ST COMPARE</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Bits 2:0 ST COMPARE - Stencil Compare Mode
000 = Never passes
001 = Pass if Sref < Sfb
010 = Pass if Sref = Sfb
011 = Pass if Sref ≤ Sfb
100 = Pass if Sref > Sfb
101 = Pass if Sref ≠ Sfb
110 = Pass if Sref ≥ Sfb
111 = Always passes

Bit 3 SE - Stencil Enable
0 = Disable
1 = Enable

Bits 11-4 STENCIL READ MASK
Bit positions set to 1 will be read.

Bits 19-12 STENCIL WRITE MASK
Bit positions set to 1 will be written.

Bits 22-20 STENCIL FAIL
000 = Sfb = Sfb
001 = Sfb = 0
010 = Sfb = Sref
011 = Sfb++ Clamp (increment and clamp)
100 = Sfb- Clamp (decrement and clamp)
101 = Sfb = ^Sfb (invert)
110 = Sfb++ (increment)
111 = Sfb- (decrement)

Bits 25-23 STENCIL PASS/Z FAIL
000 = Sfb = Sfb
001 = Sfb = 0
010 = Sfb = Sref
011 = Sfb++ Clamp (increment and clamp)
100 = Sfb- Clamp (decrement and clamp)
101 = Sfb++ (increment)
110 = Sfb- (decrement)
111 = Sfb = ^Sfb (invert)

Bits 28-26 STENCIL PASS/Z PASS
000 = Sfb = Sfb
001 = Sfb = 0
010 = Sfb = Sref
011 = Sfb++ Clamp (increment and clamp)
100 = Sfb- Clamp (decrement and clamp)
101 = Sfb = ^Sfb (invert)
110 = Sfb++ (increment)
111 = Sfb- (decrement)
Bits 31-29 Reserved

Z-Buffer Control Register (MM485D4) (Global)

<table>
<thead>
<tr>
<th>Address: 004 85D4H</th>
<th>BCI: 32H</th>
</tr>
</thead>
</table>

In the normal case for Rev. A, the W values from the vertex data are used in conjunction with this buffer. Therefore, “W” should replace “Z” in most instances below. The term Z-Buffer is retained here because this is the buffer that is used for the function that is normally associated with the term Z-Buffer, i.e., depth testing.

For Rev. B, both W buffering and true Z buffering are available (see bit 31).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Z EXPONENT OFFSET</th>
<th>EZ</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>FID</th>
<th>AZ</th>
<th>STENCIL REFERENCE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 ZB COMP - Z-Buffer Compare Mode
000 = z compare never passes
001 = Pass if Znew < Zzb
010 = Pass if Znew = Zzb
011 = Pass if Znew ≤ Zzb
100 = Pass if Znew > Zzb
101 = Pass if Znew ≠ Zzb
110 = Pass if Znew ≥ Zzb
111 = z compare always passes

Bits 4-3 Reserved

Bit 5 EZ - Enable Z-Buffer
0 = Disable Z compare and Z-Buffer updates
1 = Enable Z compare and Z-Buffer updates

Bit 6 Reserved

Bits 14-7 Z EXPONENT OFFSET
Value = 8-bit 2’s complement Z exponent offset
This value is used to adjust the Z (actually W) range so that a fixed Z format can be used. The adjusted Z is then inverted and stored in the Z-Buffer unless bit 31 of this register is set to 1.

Bit 15 Reserved

Bits 23-16 STENCIL REFERENCE VALUE
Value - Sref value to be used in stencil comparisons (see MM485D0)

Bit 24 AZ - Auto Z Clear Enable
0 = Auto Z clear disabled
1 = Auto Z clear enabled

Bit 25 FID - Frame ID
When auto Z clear is enabled via bit 24 of this register, the driver should toggle this bit each frame, starting with a value of 1.

Bits 29-26 Reserved

Bit 30 FZ - Float Z Enable
0 = Fixed Z stored in z buffer in Z32 format (both 32- and 16-bit Z)
1 = Float Z stored in z buffer in Z32 format (both 32- and 16-bit Z)
Bit 31 ZID - Z Invert Disable (Rev. A)
0 = 1/adjusted Z stored in z buffer
1 = Z is not inverted by the hardware

This bit is set to 1 when the application requires that the Z Pixel Offset (BC11D) be added to the non-inverted adjusted Z to form the value stored in the Z-Buffer (e.g., OpenGL). It is also set to one if perspective correction is turned off (BC127_27 = 1) and Z values are programmed into the buffer by the driver.

Bit 31 Z/W - Z/W Buffer Select (Rev. B)
0 = Use W Buffer
1 = Use Z Buffer

Bit 5 of this register must be set to 1 for this bit to be effective.

Z-Buffer Offset Register (MM485D8) (Global)
Read/Write Address: 104 85D8H Power-on Default: 00000000H
BCI: 33H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>Z-BUFFER OFFSET</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bits 13-0 Z-BUFFER OFFSET

Value = 2K-aligned offset in frame buffer of 0,0 element of Z-Buffer

This value is padded with 11 LSB 0’s to form a 24-bit address.

Bits 24-14 Reserved

Bits 30-25 Z-BUFFER WIDTH

Value = Z-Buffer width in tiles

For 16-bit tiles, this is ((width + 3FH) & FFC0H) >> 6
For 32-bit tiles, this is ((width + 1FH) & FFE0H) >> 5

where width is the display width in pixels. 16-bit tiles are 64 pixels wide. 32-bit tiles are 32 pixels wide. Thus, for example, if the width is 640 pixels, the value = 10 (decimal) for 16-bit pixels and 20 (decimal) for 32-bit pixels.

Bit 31 ZBD - Z-Buffer Depth
0 = 16 bits/Z coordinate
1 = 24 bits/Z coordinate

When this bit is set to 1, each coordinate is stored in the lower 24 bits of a DWord. The upper 8 bits can be used for the stencil buffer.
Destination Control Register (MM485DC) (Global)

Read/Write
Address: 004 85DCH
Power-on Default: 00000000H
BCI: 34H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>DESTINATION OFFSET</td>
<td>R</td>
<td>Destination Width in Tiles</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>R</td>
<td>Value = Destination width in tiles</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>8</td>
<td>For 16-bit tiles, this is ((\text{width} + 3FH) & \text{FFC0H}) >> 6)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>9</td>
<td>For 32-bit tiles, this is ((\text{width} + 1FH) & \text{FFE0H}) >> 5)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>6</td>
<td>where width is the destination width in pixels. 16-bit tiles are 64 pixels wide, 32-bit tiles are 32 pixels wide. Thus, for example, if the width is 640 pixels, the value = 10 (decimal) for 16-bit pixels and 20 (decimal) for 32-bit pixels.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5</td>
<td>Bit 7 Reserved</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>4</td>
<td>Bits 21-8 DESTINATION OFFSET</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3</td>
<td>Value = Bits 24-11 of a 25-bit 2K page-aligned offset of the current destination buffer</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2</td>
<td>This value is padded by the hardware with 11 LSB 0's.</td>
</tr>
<tr>
<td>6</td>
<td>DWT - Destination Width in Tiles</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td>Bits 28-22 Reserved</td>
</tr>
<tr>
<td>4</td>
<td>AAM - Antialiasing Mode</td>
<td>1</td>
<td>00 = Disable, 01 = 2X, 10 = 4X, 11 = Reserved</td>
</tr>
<tr>
<td>3</td>
<td>DPF - Destination Pixel Format</td>
<td>0</td>
<td>0 = RGB565 (16-bit), 1 = XRGB888 (32-bit)</td>
</tr>
</tbody>
</table>

Draw Control 0 Register (MM485EO) (Global)

Read/Write
Address: 004 85E0H
Power-on Default: 00000000H
BCI: 35H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>TOP SCISSORS Y</td>
<td>0</td>
<td>LEFTMOST SCISSORS X COORDINATE (inclusive)</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>Bit 10-0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>9</td>
<td>LEFTMOST SCISSORS X COORDINATE (inclusive)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>8</td>
<td>Value = 0-based pixel count such that this is the first pixel of each line to be drawn (not clipped)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>7</td>
<td>Bit 11 DP - D Performance Accelerator Enable</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>6</td>
<td>0 = Disabled, 1 = Enabled</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5</td>
<td>Bits 23-12 TOPMOST SCISSORS Y COORDINATE (inclusive)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>4</td>
<td>Value = 0-based scan line count such that this is the first scan line to be drawn (not clipped)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3</td>
<td>Note: The top is line 0.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>Bits 31-24 ALPHA REFERENCE</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Value = 8-bit number used in alpha test comparison (Aref). Only the 5 MSBs are used.

Draw Control 1 Register (MM485E4) (Global)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bits 10-0
RIGHTMOST SCISSORS X COORDINATE (inclusive)

Value = 0—based pixel count such that all pixels after this count will be clipped.

- **Bit 11**
 - **XY - XY Offset Enable**
 - 0 = Disable
 - 1 = Enable

- **Bits 23-12**
 - **BOTTOMMOST SCISSORS Y COORDINATE (inclusive)**
 - Value = 0-base scanline count such that all lines after this count will be clipped.

 Note: The top is line 0.

- **Bit 24**
 - **DE - Dither Enable**
 - 0 = Disable
 - 1 = Enable (default)

- **Bit 25**
 - **NN - Non-Normalized Texture Coordinates**
 - 0 = Normalized texture coordinate
 - 1 = Non-normalized texture coordinate

- **Bits 27-26**
 - **BCM - Backface Cull Mode**
 - 00 = Reserved
 - 01 = Disable culling (default)
 - 10 = Cull clockwise triangles
 - 11 = Cull counterclockwise triangles

- **Bits 30-28**
 - **ATC - Alpha Test Compare**
 - 000 = Never pass
 - 001 = Anew < Aref
 - 010 = Anew = Aref
 - 011 = Anew ≤ Aref
 - 100 = Anew > Aref
 - 101 = Anew ≠ Aref
 - 110 = Anew ≥ Aref
 - 111 = Always pass

 The Aref value is programmed in MM485E0_31-24.

- **Bit 31**
 - **EAT - Enable Alpha Test**
 - 0 = Disable alpha test
 - 1 = Enable alpha test
Z Read/Write Watermarks Register (MM485E8) (Global)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value Description</th>
</tr>
</thead>
</table>
| Bits 5-0 | Z READ LOW WATERMARK
Value = # of Z read FIFO entries such that when the FIFO full entries value is less than this number, the Z read memory accesses priority is raised to high |
| Bits 7-6 | Received |
| Bit 13-8 | Z READ HIGH WATERMARK
Value = # of Z read FIFO entries such that if the FIFO full entries value is greater than this number, no Z read FIFO memory requests are issued |
| Bits 15-14 | Reserved |
| Bits 21-16 | Z WRITE LOW WATERMARK
Value = # of Z write FIFO entries such that when the FIFO full entries value is less than this number, no Z write FIFO memory requests are issued
If the flush pending Z writes bit (MM48584_31) is set, this value must be all 0's. (Rev. A)
For Rev. B, these bits are effective only when the Z flush bit (MM48584_31) is cleared to 0. If MM48584_31 is set to 1, the Z write low watermark value must be 0. |
| Bits 23-22 | Reserved |
| Bits 29-24 | Z WRITE HIGH WATERMARK
Value = # of Z write FIFO entries such that if the FIFO full entries value is greater than this number, the Z write memory accesses priority is raised to high |
| Bits 31-30 | Reserved |

3D Destination/Texture Read/Write Watermarks Register (MM485EC)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 5-0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| Bit 11-6 | 3D DESTINATION READ HIGH WATERMARK
Value = # such that if the # of FIFO entries is greater than this watermark value, then the read will have low priority. If the # of entries is less than or equal to this value, the read will have high priority. |

Page 206

PROPRIETARY AND CONFIDENTIAL
Bits 17-12 3D DESTINATION WRITE LOW WATERMARK

Value = # of destination write FIFO entries such that when the FIFO full entries value is less than this number, no destination write FIFO memory requests are issued.

If the flush pending destination writes bit (MM48584_30) is set, this value must be all 0’s. (Rev. A)
For Rev. B, these bits are effective only when the destination flush bit (MM48584_30) is cleared to 0. If MM48584_30 is set to 1, the destination write low watermark value must be 0.

Bits 23-18 3D DESTINATION WRITE HIGH WATERMARK

Value = # of destination write FIFO entries such that if the FIFO full entries value is greater than this number, the destination write memory accesses priority is raised to high.

Bits 27-24 3D TEXTURE READ WATERMARK

Value = # of texture read FIFO entries such that when more than this number of entries are empty, the texture read priority is raised.

Bits 29-28 Reserved

Bits 31-30 DF – Destination Flush

This must be programmed to 01b when destination flush is enabled (MM48584_30 = 1).

<table>
<thead>
<tr>
<th>Texture Blending Color Register (MM485F0) (Global)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read/Write</td>
</tr>
<tr>
<td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>GREEN</td>
</tr>
<tr>
<td>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16</td>
</tr>
<tr>
<td>ALPHA</td>
</tr>
</tbody>
</table>

Bits 7-0 BLUE
Value = Blue color value

Bits 15-8 GREEN
Value = Green color value

Bits 23-16 RED
Value = Red color value

Bits 31-24 Alpha
Value = Alpha color value
Section 11: Motion Compensation Register Descriptions

Motion compensation registers are normally accessed via the BCI. However, they can be directly accessed via memory-mapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address.

Motion Compensation Frame Address 0 Register (MM48900)

Read/Write Address: 004 8900H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Y DATA ADDRESS FOR PREVIOUS FRAME

Bits 13-0 Y DATA ADDRESS FOR PREVIOUS FRAME

Value = 2K-aligned address of the Y data frame buffer offset for the previous frame

Bits 15-14 Reserved

Bits 29-16 Cb DATA ADDRESS FOR PREVIOUS FRAME

Value = 2K-aligned address of the Cb data frame buffer offset for the previous frame

Bits 31-20 Reserved

Motion Compensation Frame Address 1 Register (MM48904)

Read/Write Address: 004 8904H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Cr DATA ADDRESS FOR PREVIOUS FRAME

Bits 13-0 Cr DATA ADDRESS FOR PREVIOUS FRAME

Value = 2K-aligned address of the Cr data frame buffer offset for the previous frame

Bits 15-14 Reserved

Bits 29-16 Y DATA ADDRESS FOR FUTURE FRAME

Value = 2K-aligned address of the Y data frame buffer offset for the future frame

Bits 31-20 Reserved
Motion Compensation Frame Address 2 Register (MM48908)

Read/Write: Address: 004 8908H
Power-on Default: 00000000H
BCI: 42H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-0</td>
<td>Cb DATA ADDRESS FOR FUTURE FRAME</td>
<td>Value = 2K-aligned address of the Cb data frame buffer offset for the future frame</td>
</tr>
<tr>
<td>15-14</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>29-16</td>
<td>Cr DATA ADDRESS FOR FUTURE FRAME</td>
<td>Value = 2K-aligned address of the Cr data frame buffer offset for the future frame</td>
</tr>
<tr>
<td>31-20</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

Motion Compensation Frame Address 3 Register (MM4890C)

Read/Write: Address: 004 890CH
Power-on Default: 00000000H
BCI: 43H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-0</td>
<td>Y DATA ADDRESS FOR CURRENT FRAME</td>
<td>Value = 2K-aligned address of the Y data frame buffer offset for the current frame</td>
</tr>
<tr>
<td>15-14</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>29-16</td>
<td>Cb DATA ADDRESS FOR CURRENT FRAME</td>
<td>Value = 2K-aligned address of the Cb data frame buffer offset for the current frame</td>
</tr>
<tr>
<td>31-20</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

Motion Compensation Frame Address 4 Register (MM48910)

Read/Write: Address: 004 8910H
Power-on Default: 00000000H
BCI: 44H

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-0</td>
<td>Cr DATA ADDRESS FOR CURRENT FRAME</td>
<td>Value = 2K-aligned address of the Cr data frame buffer offset for the current frame</td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW</td>
<td>FRAME WIDTH (FW)</td>
<td></td>
</tr>
<tr>
<td>PF</td>
<td>FRAME HEIGHT</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>PCT</td>
<td></td>
</tr>
</tbody>
</table>
Bits 20-15 FRAME WIDTH
Value = Frame width in 16-pixel wide macroblocks

Bits 26-21 FRAME HEIGHT
Value = Frame height in 16-pixel high macroblocks

Bits 28-27 PCT - Picture Coding Type
00 = Reserved
01 = I-picture
10 = P-picture
11 = B-picture

Bits 30-29 PS - Picture Structure
00 = Reserved
01 = Top field
10 = Bottom field
11 = Frame

Bit 31 PF - P-Type Field Picture Flag
0 = First P-field picture
1 = Second P-field picture

Motion Compensation 9-bit IDCT Data Enable Register (MM48914)

Read/Write Address: 004 8914H BCI: 45H
Power-on Default: 00000000H

This register applies only to the inter-macroblock. 9-bit IDCT must be enabled via MM48928_27. If a block is not coded, the enable bit has no effect.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Cr</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bit 0 Cr 9-bit Enable
0 = 8-bit IDCT data
1 = Expand IDCT data to 9 bits

Bit 1 Cb 9-bit Enable
0 = 8-bit IDCT data
1 = Expand IDCT data to 9 bits

Bit 2 Y3 9-bit Enable
0 = 8-bit IDCT data
1 = Expand IDCT data to 9 bits

Bit 3 Y2 9-bit Enable
0 = 8-bit IDCT data
1 = Expand IDCT data to 9 bits

Bit 4 Y1 9-bit Enable
0 = 8-bit IDCT data
1 = Expand IDCT data to 9 bits

Bit 5 Y0 9-bit Enable
0 = 8-bit IDCT data
1 = Expand IDCT data to 9 bits
1 = Y0 block coded

Bits 31-6 Reserved
Motion Compensation Registers

Motion Vector 0 Register (MM48918)

Read/Write Address: 004 8918H BCI: 46H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

R R R R MOTION VECTOR 0 HORIZONTAL COMPONENT

Bits 11-0 MOTION VECTOR 0 HORIZONTAL COMPONENT

Value = Horizontal component of: (half pixel unit)

First forward motion vector [0][0] or
Dual-prime motion vector @ same parity [0][0]

Bits 15-12 Reserved

Bits 25-16 MOTION VECTOR 0 VERTICAL COMPONENT

Value = Vertical component of: (half pixel unit)

First forward motion vector [0][0] or
Dual-prime motion vector @ same parity [0][0]

Bits 27-26 Reserved

Bit 28 FS - Motion Vector [0][0] Field Select

0 = Top reference field
1 = Bottom reference field

This bit applies only to non-dual-prime field prediction.

Bits 31-29 Reserved

Motion Vector 1 Register (MM4891C)

Read/Write Address: 004 891CH BCI: 47H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

R R R R FS R R MOTION VECTOR 0 VERTICAL COMPONENT

Bits 11-0 MOTION VECTOR 0 VERTICAL COMPONENT

Value = Vertical component of: (half pixel unit)

First forward motion vector [0][0] or
Dual-prime motion vector @ same parity [0][0]

Bits 15-12 Reserved

Bits 25-16 MOTION VECTOR 0 VERTICAL COMPONENT

Value = Vertical component of: (half pixel unit)

Second forward motion vector [1][0] or
First dual-prime motion vector @ opposite parity [2][0]

Bits 27-26 Reserved
Bit 28 FS - Motion Vector [1][0] Field Select
0 = Top reference field
1 = Bottom reference field

This bit applies only to non-dual-prime field prediction.

Bits 31-29 Reserved

Motion Vector 2 Register (MM48920)

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

MOTION VECTOR 2 HORIZONTAL COMPONENT

Bits 11-0 MOTION VECTOR 2 HORIZONTAL COMPONENT

Value = Horizontal component of: (half pixel unit)

First backward motion vector [0][1] or
Second dual-prime motion vector @ opposite parity [3][0]

Bits 15-12 Reserved

Bits 25-16 MOTION VECTOR 2 VERTICAL COMPONENT

Value = Vertical component of: (half pixel unit)

First backward motion vector [0][1] or
Second dual-prime motion vector @ opposite parity [3][0]

Bits 27-26 Reserved

Bit 28 FS - Motion Vector [0][1] Field Select
0 = Top reference field
1 = Bottom reference field

This bit applies only to non-dual-prime field prediction.

Bits 31-29 Reserved

Motion Vector 3 Register (MM48924)

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

MOTION VECTOR 3 HORIZONTAL COMPONENT

Bits 11-0 MOTION VECTOR 3 HORIZONTAL COMPONENT

Value = Horizontal component of second backward motion vector [1][1] (half pixel unit)

Bits 15-12 Reserved
Motion Compensation Registers

Bits 25-16 MOTION VECTOR 3 VERTICAL COMPONENT

Value = Vertical component of second backward motion vector [1][1](half pixel unit)

Bits 27-26 Reserved

Bit 28 FS - Motion Vector [1][1] Field Select
0 = Top reference field
1 = Bottom reference field

This bit applies only to non-dual-prime field prediction.

Bits 31-29 Reserved

Macroblock Description Register (MM48928)

Read/Write Address: 004 8928H BCI: 4AH
Power-on Default: 00000000H

Writing this register via MMIO when BCI is disabled automatically kicks off decoding of a macroblock. This is used for testing.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACROBLOCK ROW (MR)</td>
<td>MOTION</td>
<td>MBT</td>
<td>DCT</td>
<td>Y0</td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Cb</td>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>9B</td>
<td>MV0</td>
<td>MV1</td>
<td>MV2</td>
<td>MV3</td>
<td>MACROBLOCK COLUMN</td>
<td>MR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 Cr
0 = Not coded
1 = Cr block coded

Bit 1 Cb
0 = Not coded
1 = Cb block coded

Bit 2 Y3
0 = Not coded
1 = Y3 block coded

Bit 3 Y2
0 = Not coded
1 = Y2 block coded

Bit 4 Y1
0 = Not coded
1 = Y1 block coded

Bit 5 Y0
0 = Not coded
1 = Y0 block coded

NOTE: Bits 5-0 apply only to the inter-macroblock.

Bit 6 DCT - DCT Type
0 = Frame DCT
1 = Field DCT

Bits 8-7 MBT - Macroblock Type
00 = Intra
01 = Forward, inter
10 = Backward, inter
11 = Backward, forward, inter
Bits 10-9 MOTION - Motion Type
00 = Reserved
01 = Field
10 = Frame (or 16x8 MC)
11 = Dual prime

Bits 16-11 MACROBLOCK ROW

Value = Y coordinate in units of macroblocks
This is (mb_addr/mb_width), using integer division with truncation towards 0.

Bits 22-17 MACROBLOCK COLUMN

Value = X coordinate in units of macroblocks
This is (mb_addr mod mb_width)

Bit 23 MV3 - Motion Vector 3 Enable
0 = Motion vector 3 disabled
1 = Motion vector 3 enabled

Bit 24 MV2 - Motion Vector 2 Enable
0 = Motion vector 2 disabled
1 = Motion vector 2 enabled

Bit 25 MV1 - Motion Vector 1 Enable
0 = Motion vector 1 disabled
1 = Motion vector 1 enabled

Bit 26 MV0 - Motion Vector 0 Enable
0 = Motion vector 0 disabled
1 = Motion vector 0 enabled

Bit 27 9B - 9-bit IDCT Enable
0 = 9-bit IDCT disabled
1 = 9-bit IDCT enabled

Bits 31-28 Reserved
Section 12: Mastered Data Transfer Register Descriptions

Mastered Data Transfer registers are normally accessed via the BCI. However, they can be directly accessed via memory-mapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address.

Mastered Data Transfer Control Register (MM48A00) - MIT/ Pixel Formatter/Motion Compensation Modes

Read/Write Address: 004 8A00H Power-on Default: 00000000H

BCI: 50H

A write to this register with BCI disabled initiates the selected transfer.

<table>
<thead>
<tr>
<th>Bits 2-0</th>
<th>CMD TYPE - Command Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Motion compensation data</td>
</tr>
<tr>
<td>010</td>
<td>Mastered image transfer</td>
</tr>
<tr>
<td>011</td>
<td>Pixel formatter</td>
</tr>
</tbody>
</table>

All other values reserved.

<table>
<thead>
<tr>
<th>Bits 20-3</th>
<th>TRANSFER LENGTH/STRIDE</th>
</tr>
</thead>
</table>

MIT Value = [\# of QWord units to be transferred] -1
Motion Compensation Value = [\# of QWord units to be transferred] -1 | bits 5-3 must be 111 (8QWord-aligned)
Formatter Value (linear) = Address offset between vertically adjacent (frame or 420 field) scan lines
Formatter Value (tiled) = Address offset between vertically adjacent page stripes

<table>
<thead>
<tr>
<th>Bits 22-21</th>
<th>DEST PF - Destination Pixel Format (Formatter only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Reserved</td>
</tr>
<tr>
<td>01</td>
<td>YCbCr422 packed</td>
</tr>
<tr>
<td>10</td>
<td>RGB565</td>
</tr>
<tr>
<td>10</td>
<td>XRGB8888</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 24-23</th>
<th>SRC PF - Source Pixel Format (Formatter only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>YCbCr420 planar</td>
</tr>
<tr>
<td>01</td>
<td>YCbCr422 packed</td>
</tr>
<tr>
<td>10</td>
<td>RGB565</td>
</tr>
<tr>
<td>10</td>
<td>XRGB8888</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 26-25</th>
<th>FM - Formatter Mode for Oversampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No oversampling</td>
</tr>
<tr>
<td>01</td>
<td>2X</td>
</tr>
<tr>
<td>10</td>
<td>4X</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

This function can only be used with tiled RGB565 frame buffer data as the source. The destination must be tiled RGB565 or XRGB8888 in the frame buffer. This function cannot be enabled simultaneously with color space conversion.

<table>
<thead>
<tr>
<th>Bit 27</th>
<th>ST - Source Tiling (valid only if frame buffer is source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Source is not tiled</td>
</tr>
<tr>
<td>1</td>
<td>Source is tiled</td>
</tr>
</tbody>
</table>
Bit 28 CS - Color Space Conversion Enable (Formatter only)
- 0 = Disable
- 1 = Enable

This function cannot be enabled simultaneously with oversampling (bits 26-25).

Bits 30-29 420 DISP - 420 Display (Formatter only)
- 00 = Frame to frame
- 01 = Frame to field
- 10 = Field to frame
- 11 = Field to Field

This applies only to YCbCr420 source. It affects both luma and chroma data.

Bit 31 TD - Transfer Direction
- 0 = System memory to frame buffer
- 1 = Frame buffer to system memory

This bit applies only to mastered image transfers.

Mastered Data Transfer Control Register (MM48A00) - Command DMA Mode

<table>
<thead>
<tr>
<th>Address: 004 8A00H</th>
<th>BCI: 50H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on Default: 00000000H</td>
<td></td>
</tr>
</tbody>
</table>

A write to this register with BCI disabled initiates a command DMA transfer.

<table>
<thead>
<tr>
<th>TRANSFER COUNT</th>
<th>CMD TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16</td>
<td></td>
</tr>
<tr>
<td>R R R R R R R R R R R R R R</td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 CMD TYPE - Command Type
- 100 = Command DMA
- All other values reserved.

Bits 20-3 TRANSFER COUNT
- Value = [Transfer size in QWords] - 1

Bits 31-21 Reserved

Mastered Data Transfer Control Register (MM48A00) - Vertex Mode

<table>
<thead>
<tr>
<th>Address: 004 8A00H</th>
<th>BCI: 50H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on Default: 00000000H</td>
<td></td>
</tr>
</tbody>
</table>

A write to this register with BCI disabled initiates a vertex data transfer.

<table>
<thead>
<tr>
<th>START ADDRESS</th>
<th>CMD TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16</td>
<td></td>
</tr>
<tr>
<td>BT MT</td>
<td></td>
</tr>
</tbody>
</table>

Bits 2-0 CMD TYPE - Command Type
- 001 = Vertex fetching
- All other values are reserved.
Mastered Data Transfer Registers

Bit 3 MT - Memory Type
0 = Frame buffer
1 = System memory

Bit 4 BT - Bus Type
0 = PCI
1 = AGP

This bit must be cleared to 0 when bit 3 of this register is cleared to 0.

Bits 31-5 START ADDRESS
Value = 4 QWord-aligned start address for vertex data to be transferred.
If the data are in the frame buffer, only bits 24-5 are used.

Mastered Data Transfer Source/Luma Address Register (MM48A04)
Read/Write Address: 004 8A04H BCI: 51H
Power-on Default: 00000000H

This register applies to mastered image, pixel formatter, motion compensation and command DMA transfers.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

SOURCE ADDRESS

Bit 0 SL - Source Location
0 = Source is in frame buffer memory
1 = Source is in system memory

Bit 1 SMT - System Memory Type
0 = Source is in PCI memory (physically contiguous and page-locked)
1 = Source is in AGP memory

This bit must be cleared to 0 if the source is in frame buffer memory.

Bit 2 Reserved

Bits 4-3 QWR - 420 QWord Resolution
Value = QWord resolution used in bits 31-5 of this register for YCbCr420 source data mode only. Otherwise, these bits are reserved.

Bits 31-5 SOURCE ADDRESS
Value = 4 QWord-aligned starting address of the entire source bitmap
For frame buffer memory, only bits 24-5 are valid.
Mastered Data Transfer Destination Address Register (MM48A08)

Read/Write
Address: 004 8A08H
Power-on Default: 00000000H

This register applies to mastered image and formatter transfers.

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIT DESTINATION ADDRESS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>SMT</td>
<td>SL</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0
DL - Destination Memory Location
0 = Destination is in frame buffer memory
1 = Destination is in system memory

Writes to system memory are not supported for AGP systems.

Bits 4-1
Reserved

Bits 31-5
MIT DESTINATION ADDRESS

Value = 4 QWord-aligned starting address of the entire destination bitmap
For frame buffer memory, only bits 24-5 are valid.

Mastered Data Transfer Formatter Source Dimensions Register (MM48A0C)

Read/Write
Address: 004 8A0CH
Power-on Default: 00000000H

This register applies to pixel formatter transfers.

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOURCE WIDTH</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Bits 9-0
SOURCE WIDTH

Value = Source width - 1 in QWords

2 pixel aligned for XRGB8888 (4 pixel aligned if destination is 16bpp)
4 pixel aligned for RGB565
16 pixel aligned for YCbCr

Bits 15-10
Reserved

Bits 26-16
SOURCE HEIGHT

Value = Source height -1 in lines

Bits 31-27
Reserved
Mastered Data Transfer Registers

Mastered Data Transfer Formatter Destination Dimensions Register (MM48A10)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>STRIDE WIDTH</td>
<td>R</td>
<td>DT</td>
<td></td>
</tr>
</tbody>
</table>

Bits 13-0 **STRIDE WIDTH**

Value = Destination stride in QWords

Bits 15-14 **Reserved**

Bit 16 **DT** - Destination Tiling

0 = linear (not tiled)
1 = tiled

This bit applies only when the destination is an RGB format in the frame buffer.

Bits 31-17 **Reserved**

Mastered Data Transfer Source/Cb Address Register (MM48A14)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE/Cb ADDRESS</td>
<td>QWR</td>
<td>R</td>
<td>SMT</td>
<td>SL</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Bit 0 **SL** - Source Location

0 = Source is in frame buffer memory
1 = Source is in system memory

Bit 1 **SMT** - System Memory Type

0 = Source is in PCI memory (physically contiguous and page-locked)
1 = Source is in AGP memory

This bit must be cleared to 0 if the source is in frame buffer memory.

Bit 2 **Reserved**

Bits 4-3 **QWR** - 420 QWord Resolution

Value = QWord resolution used in bits 31-5 of this register.

Bits 31-5 **SOURCE/Cb ADDRESS**

Value = 4 QWord-aligned starting address of the Cb data for YCbCr420 conversion

For frame buffer memory, only bits 24-5 are valid.
Mastered Data Transfer Registers

Mastered Data Transfer Source/Cr Address Register (MM48A18)

Read/Write Address: 004 8A18H Power-on Default: 00000000H
BCI: 56H

This register applies to YCbCr420 formatter transfers.

<table>
<thead>
<tr>
<th>Bit 31-5 SOURCE/Cr ADDRESS</th>
<th>QWR</th>
<th>R</th>
<th>SMT</th>
<th>SL</th>
</tr>
</thead>
</table>

- **SOURCE/Cr ADDRESS**
- **QWR** - 420 QWord Resolution
- **R** - Read Bit
- **SMT** - System Memory Type
- **SL** - Source Location

Bit 0: SL - Source Location
- 0 = Source is in frame buffer memory
- 1 = Source is in system memory

Bit 1: SMT - System Memory Type
- 0 = Source is in PCI memory (physically contiguous and page-locked)
- 1 = Source is in AGP memory

This bit must be cleared to 0 if the source is in frame buffer memory.

Bit 2: Reserved

Bits 4-3: QWR - 420 QWord Resolution

Value = QWord resolution used in bits 31-5 of this register.

Bits 31-5: SOURCE/Cr ADDRESS

Value = 4 QWord-aligned starting address of the Cr data for YCbCr420 conversion.

For frame buffer memory, only bits 24-5 are valid.

Mastered Data Transfer Source Cr/Cb Strides Register (MM48A1C)

Read/Write Address: 004 8A1CH Power-on Default: 00000000H
BCI: 57H

This register applies to pixel formatter YCbCr420 transfers.

<table>
<thead>
<tr>
<th>Bit 31-5 Cr MAP SOURCE STRIDE</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 2-0 Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bits 15-3 Cr MAP SOURCE STRIDE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Value = Source stride in QWords of the Cr map.

For linear data, this is the address offset between vertically adjacent pixels. For tiled data, this is the address offset between vertically adjacent page strips. The maximum stride is 64KB.

Bits 18-16: Reserved

Bits 31-19: Cb MAP SOURCE STRIDE

Value = Source stride in QWords of the Cb map.

For linear data, this is the address offset between vertically adjacent pixels. For tiled data, this is the address offset between vertically adjacent page strips. The maximum stride is 64KB.
Section 13: Configuration/Status Register Descriptions

Configuration/status registers are accessed directly via memory-mapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address. Two registers (Vertex Buffer Address and BCI Power Management) also have a BCI address.

Status Word 0 Register (MM48C00) (Rev A)

Read Only Address: 004 8C00H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>PF</td>
<td>MEI</td>
<td>R</td>
<td>MCI</td>
<td>2DI</td>
<td>3DI</td>
<td>BI</td>
<td>FE</td>
<td></td>
</tr>
</tbody>
</table>

FILLED COMMAND BUFFER ENTRIES (FE)

The number includes filled positions in both the on-chip and overflow buffers.

Bits 16-0 FILLED COMMAND BUFFER ENTRIES

Value = # of filled positions in the command queue

- **Bit 17**
 BI - BCI Idle
 0 = Not idle
 1 = Idle

- **Bit 18**
 3DI - 3D Graphics Engine Idle
 0 = Not idle
 1 = Idle

- **Bit 19**
 2DI - 2D Engine Idle
 0 = Not idle
 1 = Idle

- **Bit 20**
 MCI - Motion Compensation Processor Idle
 0 = Not idle
 1 = Idle

- **Bit 21**
 Reserved

- **Bit 22**
 MEI - Master Engine Idle
 0 = Not idle
 1 = Idle

- **Bit 23**
 PF - Page Flip Pending
 0 = Not pending
 1 = Pending

- **Bits 31-24** Reserved
Status Word 0 Register (MM48C00) (Rev B)

Read Only Address: 004 8C00H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FE</td>
<td></td>
</tr>
</tbody>
</table>

FILLED COMMAND BUFFER ENTRIES (FE)

Value = # of filled (DWORD) positions in the command queue

The number includes filled positions in both the on-chip and overflow buffers. The LSB of this field now reads 1 from
the time the counter hits the upper threshold until just before its hits the lower threshold on the way down. When the
counter hits the lower threshold, the LSB changes to 0 and remains in that state until just before it reaches the upper
threshold on the way up.

Bits 24-21 Reserved
Bit 25 BI - BCI Idle
0 = Not idle
1 = Idle
Bit 26 3DI - 3D Graphics Engine Idle
0 = Not idle
1 = Idle
Bit 27 2DI - 2D Engine Idle
0 = Not idle
1 = Idle
Bit 28 MCI - Motion Compensation Processor Idle
0 = Not idle
1 = Idle
Bit 29 Reserved
Bit 30 MEI - Master Engine Idle
0 = Not idle
1 = Idle
Bit 31 PF - Page Flip Pending
0 = Not pending
1 = Pending

Status Word 1 Register (MM48C04)

Read Only Address: 004 8C04H
Power-on Default: 00000000H

The event tag values in this register is passed as part of an UpdateShadowStatus BCI command.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EVENT TAG 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EVENT TAG 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 15-0 EVENT TAG 0

Value = 16-bit event tag reporting the status of command parsing at the time of an update shadow status request is
reached by the parser
Bits 31-16 EVENT TAG 1

Value = 16-bit event tag reporting the status of command parsing at the time of an update shadow status request is reached by the parser

Status Word 2 Register (MM48C08)

Read Only Address: 004 8C08H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VERTICAL RETRACE COUNT</td>
<td>SCAN LINE NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>R</td>
<td>VERT RETRACE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 10-0 SCAN LINE NUMBER

Value = Number of the scan line currently being refreshed

Bits 18-11 VERTICAL RETRACE COUNT

Value = 8-bit vertical retrace counter current value

An 8-bit counter is incremented each vertical retrace. The counter rolls over to 0 when it reaches its maximum.

Bits 31-19 Reserved

Shadow Status Address Register (MM48C0C)

Read/Write Address: 004 8C0CH
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHADOW STATUS ADDRESS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>SUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>SHADOW STATUS ADDRESS</td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 SUE - Status Update Enable

0 = Disable updating the shadow status in system memory
1 = Enable updating the shadow status in system memory

BCI must be disabled when this bit is set. Updates are generated either by an UpdateShadowStatus BCI command or by passing a threshold programmed in MM48C10 (assuming MM48C18_1 = 1).

Bits 4-1 Reserved

Bits 31-5 SHADOW STATUS ADDRESS

Value = Bits 31-5 of the physical address of Status Word 0 in locked system memory

This value is padded with five 0’s by the hardware (32-byte aligned).
Command Buffer Thresholds Register (MM48C10)

Read/Write Address: 004 8C10H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

COMMAND BUFFER STOP WRITE (UPPER) THRESHOLD

Bits 15-0 COMMAND BUFFER STOP WRITE (UPPER) THRESHOLD

Value = # of command queue entries empty in DWORDs (Rev. A) or 32 DWORD units (Rev. B)

When this many 32-bit queue entries are used (both on- and off-chip) and MM8C18_2 = 1 and MM8C0C_0 = 1, the Shadow Status in system memory is updated to indicate that the CPU must stop register writes. Software reads bits 16-0 of Status Word 0 to determine the number of entries. This update occurs only as the threshold is passed as the queue is filling. This value must be greater than the resume write threshold in bits 16-0 of this register.

Bits 31-16 COMMAND BUFFER RESUME WRITE (LOWER) THRESHOLD

Value = # of command queue entries in DWORDs (Rev. A) or 32 DWORD units (Rev. B)

When this many 32-bit queue entries are used (both on- and off-chip) and MM8C18_2 = 1 and MM8C0C_0 = 1, the Shadow Status in system memory is updated to indicate that the CPU can resume register writes. Software reads bits 16-0 of Status Word 0 to determine the number of entries. This update occurs only as the threshold is passed as the queue is emptying. This value must be less than the stop write threshold in bits 16-0 of this register.

Command Overflow Buffer Register (MM48C14)

Read/Write (See bits) Address: 004 8C14H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

COMMAND OVERFLOW BUFFER OFFSET

Bits 13-0 COMMAND OVERFLOW BUFFER OFFSET (Read/Write)

Value - Bits 24-11 of the address offset of the command overflow buffer in the frame buffer

This value is padded with eleven 0's by the hardware (2K-aligned).

Bits 27-14 Reserved

Bit 28 WC – Write Combining Enable

0 = Write combining disabled
1 = Write combining enabled

When write combining is enabled, the driver must ensure that there is no address gap within 32 BCI entries (addresses must be consecutive)
Bits 31-29 COB SIZE - COMMAND OVERFLOW BUFFER SIZE (Read/Write) (Rev. A)

000 = 256 entries (2KB address alignment)
001 = 512 entries (2KB address alignment)
010 = 1K entries (4KB address alignment)
011 = 2K entries (8KB address alignment)
100 = 4K entries (16KB address alignment)
101 = 8K entries (32KB address alignment)
110 = 16K entries (64KB address alignment)
111 = 32K entries (128KB address alignment)

Each entry uses 4 bytes. This buffer is enabled via MM48C18_2.

Bits 31-29 COB SIZE - COMMAND OVERFLOW BUFFER SIZE (Read/Write) (Rev. B)

000 = 8K entries
001 = 16K entries
010 = 32K entries
011 = 64K entries
100 = 128K entries
101 = 256K entries
110 = 512K entries
111 = 1M entries

Command Overflow Buffer Pointers Register (MM48C18)

Read/Write Address: 004 8C18H
Power-on Default: 00000000H

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| | | | | | | | | | | | | | | | |
| CBE | R | CMD OVERFLOW POINTER | R | R | R | R | R | BE | OQE | CSU | R |
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |

Bit 0 Reserved

Bit 1 CSU - Command Buffer Status Update
0 = Command buffer status update disabled
1 = Command Buffer status update enabled

Updating is based on the thresholds in MM48C10. MM8C0C_0 must also be set to 1 for this update to occur.

Bit 2 OQE - Command Overflow Buffer Enable
0 = Overflow command circular buffer disabled
1 = Overflow command circular buffer enabled

Bit 3 BE - BCI Enable
0 = BCI function disabled
1 = BCI function enabled

This bit affects all BCI functions.

Bits 8-4 Reserved

Bits 13-9 CMD OVERFLOW POINTER

Value = # of commands and MMIO register writes in the command overflow buffer

Bit 14 Reserved

Bits 31-15 COMMAND BUFFER ENTRIES

Value = # of entries (on and off chip) in the command buffer
Vertex Buffer Address Register (MM48C20)

Read/Write Address: 104 8C20H
Power-on Default: 00000000H
BCI: 3EH

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>SMT</td>
<td>SL</td>
<td>VERTEX BUFFER ADDRESS</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
</tr>
</tbody>
</table>

Bit 0
SL - Vertex Buffer Location
0 = Vertex buffer is in frame buffer memory
1 = Vertex buffer is in system memory

Bit 1
SMT - System Memory Type
0 = Vertex buffer is in PCI memory (physically contiguous and page-locked)
1 = Vertex buffer is in AGP memory

This bit must be cleared to 0 if the source is in frame buffer memory.

Bits 4-2
Reserved

Bits 31-5
VERTEX BUFFER ADDRESS

Value = 4 QWord-aligned address of the start of the vertex buffer

For frame buffer memory, only bits 23-5 are valid.

BCI Power Management Register (MM48C24)

Read/Write Address: 004 8C24H
Power-on Default: 00000000H
BCI: 5FH

With automatic clock management and BCI operation enabled for a particular block, the clock to that block is turned off when the block is idle. With automatic clock management for a block disabled, the clock is turned on/off by the corresponding control bit (one of bits 8-11 of this register).

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>MT</td>
<td>MC</td>
<td>2D</td>
<td>3D</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>AMT</td>
<td>AMC</td>
<td>A2D</td>
<td>A3D</td>
<td>31</td>
</tr>
</tbody>
</table>

Bit 0
A3D - Automatic 3D Engine Clock Management Enable
0 = Automatic 3D engine clock management disabled (use bit 8 to enable/disable clock)
1 = Automatic 3D engine clock management enabled (disable clock when engine idle)

Bit 1
A2D - Automatic 2D Engine Clock Management Enable
0 = Automatic 2D engine clock management disabled (use bit 9 to enable/disable clock)
1 = Automatic 2D engine clock management enabled (disable clock when engine idle)

Bit 2
AMC - Automatic Motion Compensation Engine Clock Management Enable
0 = Automatic motion compensation engine clock management disabled (use bit 10 to enable/disable clock)
1 = Automatic motion compensation engine clock management enabled (disable clock when engine idle)

Bit 3
AMT - Automatic Mastered Transfer Engine Clock Management Enable
0 = Automatic mastered transfer engine clock management disabled (use bit 11 to enable/disable clock)
1 = Automatic mastered transfer engine clock management enabled (disable clock when engine idle)

Bits 7-4
Reserved

Bit 8
3D - 3D Engine Clock Enable
0 = Clock to 3D Engine enabled
1 = Clock to 3D Engine disabled
Bit 9 2D - 2D Engine Enable
 0 = 2D Engine disabled
 1 = 2D Engine enabled

Bit 10 MC - Motion Compensation Engine Enable
 0 = Motion Compensation Engine disabled
 1 = Motion Compensation Engine enabled

Bit 11 MT - Mastered Transfer Engine Enable
 0 = Mastered Transfer Engine disabled
 1 = Mastered Transfer Engine enabled

Bits 31-12 Reserved

Tiled Surface Register (MM48C40, MM48C44, MM48C48, MM48C4C, MM48C50)

Read/Write Address: 004 8C40H
Power-on Default: 00000000H

For address mapping 0 (CRB0_7 = 1), all five of the tiled surface registers listed above are defined by this register and apply to Tile Surface Address Aperture 0-4 respectively. For address mapping 1 (CRB0_7 = 0), only MM48C40, MM48C44 and MM48C48 are valid and apply to Tiled Surface Address Aperture 0-2 respectively.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TILED SURFACE FRAME BUFFER OFFSET</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>BPP</td>
<td>YF</td>
<td>S3TC</td>
<td>TILED SURFACE WIDTH</td>
<td></td>
</tr>
</tbody>
</table>

Bits 19-0 TILED SURFACE FRAME BUFFER OFFSET

Value = 4-QWord-aligned address offset in the frame buffer

This alignment can be used for texture surfaces. 2K-alignment (2 additional LSB 0’s) must be used for the Z-Buffer and draw buffers.

Bits 25-20 TILED SURFACE WIDTH

Value = Surface width in tiles

For 4 bits, this (width + 3FH) >>6

For 8 and 16-bit tiles, this is ((width + 3FH) & FFC0H) >> 6

For 32-bit tiles, this is ((width + 1FH) & FFE0H) >> 5

where width is the surface width in pixels. 4-, 8- and 16-bit tiles are 64 pixels wide. 32-bit tiles are 32 pixels wide. Thus, for example, if the width is 640 pixels, the value = 10 (decimal) for 8- and 16-bit pixels and 20 (decimal) for 32-bit pixels.

Bits 28-26 S3TC - S3TC Surface Width

000 = 64 pixels or less
001 = 128 pixels
010 = 256 pixels
011 = 512 pixels
100 = 1024 pixels
101 = 2048 pixels
110 = Reserved
111 = Reserved

Bit 29 YF - Y Range Flag

0 = Y range is from 23:13 for 8-bit and 32-bit format, from 23:12 for 16-bit format and from 23-14 for 4-bit format
1 = Y range is from 23:12 for 32-bit format and from 23:11 for 16-bit format
Bits 31-30 BPP - Tiled Surface Bits/Pixel
00 = 4 bits/pixel
01 = 8 bits/pixel
10 = 16 bits/pixel
11 = 32 bits/pixel

Alternate Status Word 0 Register (MM48C60) (Rev. A)
Read Only
Address: 004 8C60H
Power-on Default: 00000000H

This register provides the same information as MM48C00.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Filled Command Buffer Entries (FE)															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	PF	MEI	R	MCI	2DI	3DI	BI	FE		

Bits 16-0 Filled Command Buffer Entries

Value = # of filled positions in the command queue.

The number includes filled positions in both the on-chip and overflow buffers.

Bit 17 BI - BCI Idle
0 = Not idle
1 = Idle

Bit 18 3DI - 3D Graphics Engine Idle
0 = Not idle
1 = Idle

Bit 19 2DI - 2D Engine Idle
0 = Not idle
1 = Idle

Bit 20 MCI - Motion Compensation Processor Idle
0 = Not idle
1 = Idle

Bit 21 Reserved

Bit 22 MEI - Master Engine Idle
0 = Not idle
1 = Idle

Bit 23 PF - Page Flip Pending
0 = Not pending
1 = Pending

Bits 31-24 Reserved
Alternate Status Word 0 Register (MM48C60) (Rev B)

Read Only
Address: 004 8C60H
Power-on Default: 00000000H

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

FILLED COMMAND BUFFER ENTRIES (FE)

Bits 16-0: FILLED COMMAND BUFFER ENTRIES

Value = # of filled positions in the command queue

The number includes filled positions in both the on-chip and overflow buffers.

Bit 17: BI - BCI Idle
0 = Not idle
1 = Idle

Bit 18: 3DI - 3D Graphics Engine Idle
0 = Not idle
1 = Idle

Bit 19: 2DI - 2D Engine Idle
0 = Not idle
1 = Idle

Bit 20: MCI - Motion Compensation Processor Idle
0 = Not idle
1 = Idle

Bit 21: Reserved

Bit 22: MEI - Master Engine Idle
0 = Not idle
1 = Idle

Bit 23: PF - Page Flip Pending
0 = Not pending
1 = Pending

Bits 31-24: Reserved

Alternate Status Word 1 Register (MM48C64)

Read Only
Address: 004 8C64H
Power-on Default: 00000000H

This register provides the same information as MM48C04

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

VERTEX BUFFER TAG

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

CURRENT TEXTURE SURFACE TAG

| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

Bits 15-0: EVENT TAG

Value = 16-bit event tag reporting the status of command parsing at the time of an update shadow status request is reached by the parser.
Bits 31-16 CURRENT TEXTURE SURFACE TAG

Value = 16-bit texture surface counter current value

A 16-bit counter is incremented each time the Texture Address register (MM485C4) is updated. The DirectDraw driver uses this to synchronize re-use of surface memory through LockSurface.
Index

1
1.5V
auto adjust of drive.. 54, 55
pad compensation... 54
1280x1024x24 support................................. 87

2
24 bpp packed .. 151
2D Engine
enable .. 89
2D Graphics Engine
axial step constant ... 136
background color... 140
background/foreground mix................................ 142
bitplane read mask... 141
bitplane write mask... 140
clocking.. 146
color compare.. 141, 146
color source .. 142, 143
command types.. 139
current X position ... 136
current X position ... 135
destination base address 145
destination X position 137
destination Y position 136
diagonal step constant 137
drawing direction .. 138
enable .. 134
enable 8 bpp or greater 76
foreground color .. 140
idle status... 223, 224, 230, 231
line error term ... 137
major axis pixel count 147
memory mapping ... 71
minor axis pixel count 143
scissors ... 144
screen width ... 82
select mix register ... 145
short stroke vector .. 139
software reset... 133
source base address 145

3
32 bits/pixel operation 146
3D engine
scissors ... 204
3D Engine
backface cull mode .. 205
color compare ... 190, 191, 199
clock types ... 139
clock select ... 75
clock skew ... 47, 48, 88
clocking .. 126
clocking .. 126
command priority select 93
clocking .. 126
clock suspend ... 93
clocking .. 126
clocking .. 126
command register ... 126
enable ... 75, 126
command buffer entries 223, 224, 231
fog control .. 200
destination control ... 204
enable .. 89, 134
fog control .. 200
texture address ... 192, 193
texture control ... 190, 191
texture description .. 197
texture surface tag ... 232
Z buffering control 201, 202
4 bank SDRAM support 103

A
AD bus
drive control .. 98
AGP
2x clock skew control 111
4x capability ... 108
clock select ... 75
clock skew ... 47, 48, 88
clocking .. 126
clock select ... 75
clock suspend ... 93
clocking .. 126
clock suspend ... 93
clocking .. 126
Enable ... 89, 134
FIFO status ... 126
IDSEL .. 75
PLL bypass .. 74
PLL powerdown ... 48
side band addressing enable 126
sideband addressing support 94
status register ... 125
stop SB_STB .. 93
suspend mode ... 93
voltage select .. 108
alpha blending ... 156
Configuration/Status Registers

B
backface cull mode ... 205
BCI .. 4
color depth 82
BLANK pedestal enable .. 48
blank/border select .. 72
blending ... 155
block write
enable 1 cycle operation 100
burst command interface 4
bus master enable.. 114
byte mode addressing ... 23
byte swap ... 139

capabilities list pointer ... 123
color depth .. 82
chip ID .. 70, 71
chroma keying .. 151, 153
clocking
double buffering
enable ... 43
2D.. 146
DCLK
control ... 47
DAC
internal reference current adjust 49
decimation ... 9, 44
eexternal output .. 44
einvert ... 44
internal reference current adjust 49
new DCLK PLL load ... 43
new ECLK PLL load .. 50
new MCLK and DCLK PLL load 44
New MCLK PLL load ... 43

C
CLUT
18- or 24-bit select ... 150
COLOR
backface cull mode ... 205
BCI .. 4
command circular buffer.. 227
disable ... 227
primary bitmap descriptor 149
interrupt .. 131, 132, 133
power management ... 228
programming 41, 42, 52, 53
refresh cycle control ... 20
specify start position ... 77
type select .. 91
type speciication ... 91
VGA.. 26, 29
color depth (bpp) ... 82
color keying .. 151
in KRGB mode .. 152
on color index ... 152

D
DAC
internal reference current adjust 49
DDC communications .. 41, 42, 53
destination base address .. 145
display active status ... 6
display FIFO fetch enable .. 73
display memory
refresh cycle control ... 20
size specification ... 74
type select .. 91

D2 PCI management state enable 78
DAC
internal reference current adjust 49
DDC communications .. 41, 42, 53

D2 PCI management state enable 78
DAC
internal reference current adjust 49
DDC communications .. 41, 42, 53

halving ... 44
inverted ... 72
new DCLK PLL load ... 43
new ECLK PLL load .. 50
new MCLK and DCLK PLL load 44
new MCLK PLL load ... 43

D2 PCI management state enable 78
DAC
internal reference current adjust 49
DDC communications .. 41, 42, 53

 joystick enable ... 73
 joystick type select ... 91
 joystick type select ... 91
display memory
refresh cycle control ... 20
size specification ... 74
type select .. 91
display pitch ... 20
display start address ... 91
double buffering
select ... 159
doubleword mode addressing 20, 21, 71
drive control .. 98
Index

<table>
<thead>
<tr>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECLK</td>
<td>hardware graphics cursor</td>
</tr>
<tr>
<td>IREF control ... 50</td>
<td>background color ... 81</td>
</tr>
<tr>
<td>loading new frequency 50</td>
<td>enable .. 79</td>
</tr>
<tr>
<td>enable .. 50</td>
<td>fix for flat panel display 55</td>
</tr>
<tr>
<td>hardware graphics cursor 79</td>
<td>foreground color ... 80</td>
</tr>
<tr>
<td>linear addressing 84, 134</td>
<td>pattern display x origin 81</td>
</tr>
<tr>
<td>LPB .. 171</td>
<td>pattern display y origin 82</td>
</tr>
<tr>
<td>PCI bus master operation 114</td>
<td>storage start address 81</td>
</tr>
<tr>
<td>video display ... 7, 135</td>
<td>Windows/X-Windows modes 84</td>
</tr>
<tr>
<td>end horizontal blank 13</td>
<td>x origin ... 80</td>
</tr>
<tr>
<td>end horizontal sync position 14</td>
<td>y origin ... 80</td>
</tr>
<tr>
<td>end vertical blank 22</td>
<td>HDTV support .. 152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>I/O access</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO fetch delay 100</td>
<td>disable ... 74</td>
</tr>
<tr>
<td>flat panel .. 102</td>
<td>enable .. 114</td>
</tr>
<tr>
<td>centering and expansion for 15/16 or 32 bpp ... 102</td>
<td>I2C port .. 104</td>
</tr>
<tr>
<td>detect .. 50</td>
<td>add wait states ... 175</td>
</tr>
<tr>
<td>display enable positioning 60</td>
<td>ID. chip ... 70, 71</td>
</tr>
<tr>
<td>hardware cursor fix 55</td>
<td>interlaced operation .. 77, 79</td>
</tr>
<tr>
<td>horizontal centering 56</td>
<td>interrupt ... 134</td>
</tr>
<tr>
<td>horizontal expansion 56</td>
<td>2D Graphics Engine busy interrupt status 131</td>
</tr>
<tr>
<td>horizontal expansion factor 59</td>
<td>2D Graphics Engine interrupt enable 132</td>
</tr>
<tr>
<td>panel detect .. 50</td>
<td>enable .. 72</td>
</tr>
<tr>
<td>PanelLink 12/24-bit interface 50</td>
<td>FIFO empty interrupt enable 132</td>
</tr>
<tr>
<td>strapping bit ... 108</td>
<td>FIFO empty interrupt status 131</td>
</tr>
<tr>
<td>sync positioning 61</td>
<td>FIFO overflow interrupt enable 132</td>
</tr>
<tr>
<td>vertical centering 57</td>
<td>FIFO overflow interrupt status 131</td>
</tr>
<tr>
<td>vertical expansion 57</td>
<td>LPB ... 174</td>
</tr>
<tr>
<td>vertical expansion factor 60</td>
<td>vertical retrace interrupt clear 19</td>
</tr>
<tr>
<td>flicker filter ... 199</td>
<td></td>
</tr>
<tr>
<td>odd/even field status 72</td>
<td></td>
</tr>
<tr>
<td>fog ... 200</td>
<td></td>
</tr>
<tr>
<td>control .. 200</td>
<td></td>
</tr>
<tr>
<td>fog table registers 199</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>I/O access</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma correction 47</td>
<td>disable ... 74</td>
</tr>
<tr>
<td>enable .. 47</td>
<td>enable .. 114</td>
</tr>
<tr>
<td>set CLUT for 24-bit operation 47</td>
<td>I2C port .. 104</td>
</tr>
<tr>
<td>genlock support .. 152</td>
<td>add wait states ... 175</td>
</tr>
<tr>
<td>global bitmap descriptor 148</td>
<td>ID. chip ... 70, 71</td>
</tr>
<tr>
<td>registers .. 148</td>
<td>interlaced operation .. 77, 79</td>
</tr>
<tr>
<td>select ... 82</td>
<td>interrupt ... 134</td>
</tr>
<tr>
<td>GOP0 ... 86</td>
<td>2D Graphics Engine busy interrupt status 131</td>
</tr>
<tr>
<td>GP0UT ... 86</td>
<td>2D Graphics Engine interrupt enable 132</td>
</tr>
<tr>
<td>pin state control .. 40</td>
<td>enable .. 72</td>
</tr>
<tr>
<td>green PC .. 40</td>
<td>FIFO empty interrupt enable 132</td>
</tr>
<tr>
<td>HSYNC/VSYNC control 40</td>
<td>FIFO empty interrupt status 131</td>
</tr>
<tr>
<td></td>
<td>FIFO overflow interrupt enable 132</td>
</tr>
<tr>
<td></td>
<td>FIFO overflow interrupt status 131</td>
</tr>
<tr>
<td></td>
<td>LPB ... 174</td>
</tr>
<tr>
<td></td>
<td>vertical retrace interrupt clear 19</td>
</tr>
</tbody>
</table>
vertical retrace interrupt enable........... 19, 131, 132
vertical retrace interrupt status............. 6
interrupt pin claimed.......................... 124

L
L parameter... 102, 103
latency timer.. 116
LCLK
 invert ... 172
 line compare... 23
linear addressing
 bypass VGA logic... 39
 enable ... 84, 134
 window position. 117, 118, 119, 120, 121, 122, 123
 window size ... 84
live video
 tearing .. 101
Local Peripheral Bus
LBP ... 171
LPB
 bilinear decimation 180, 181
 color byte swap... 171
 decimation... 179
 enable .. 171
 frame buffer address 175, 180
 horizontal decimation type.............................. 171
 input window size.. 178
 interrupt .. 132
 interrupts... 174
 line stride... 179
 live video data mirroring................................. 172
 mode select.. 171
 odd/even field detect 172
 omit stride ... 171
 output FIFO .. 173, 180
 quadilinear decimation 181
 reset ... 171
 skip frames... 171
 sync polarity.. 171
 VBI enable... 182
 VBI parameters .. 182, 183, 184
 video FIFO ... 172, 173
 VSYNC indicator.. 175
 write priority ... 101
LUT write cycle control.......................... 45

M
MA bus
 drive strength ... 98
macroblock description.............................. 211, 214
master abort ... 115
mastered image transfer
 registers ... 219
mastered image transfers
 control .. 217, 218
 engine idle status .. 223, 224, 230, 231
 maximum scan line .. 16
MCLK
 external output ... 43
 loading new frequency 43, 44
 programming .. 40, 41, 51
 use external input .. 74
memory mapped access
 enable .. 114
memory mapped I/O
 MMIO only select .. 39
memory mapping
 Enhanced VGA modes.. 71
 mipmapping... 190, 191
MMIO
 chip wakeup... 135
 memory mapped I/O .. 83
motion compensation
 engine idle status ... 223, 224, 230, 231
 macroblock description 211, 214
 registers ... 209

N
nibble swap.. 83

O
offset ... 20
overflow command circular buffer
 enable .. 227
pattern fill... 139
PCI bus
 bus master enable.. 114
 bus master latency timer 116
 maximum latency ... 124
 minimum grant ... 124
 received master abort 115
 received target abort 115
 subvendor ID.. 123
PCI Bus
 BIOS ROM access enable 123
 BIOS ROM base address 123
 capabilities list ... 114
 capabilities list pointer 123
 capability identifier 125
 disable read bursts .. 76
 enable disconnect ... 89
enable I/O accesses... 114
enable memory accesses.. 114
interrupt line claim disabled.. 74
interrupt pin claimed... 124
linear addressing base address 117, 118, 119, 120, 121, 122, 123
master abort handling during DAC cycles............................... 73
power management... 127
power management D2 state enable... 78
retry handling during DAC cycles.. 73
subsystem ID... 123
subsystem ID shadow CR registers.. 99
subsystem vendor ID shadow CR registers............................. 99
PD bus drive strength... 98
pitch .. 20
PLL M parameter... 41, 51
PLL N parameter... 40, 51
PLL R parameter... 40, 51
power management..
BCI ... 228
HSYNC control.. 40
VSYNC control.. 40
primary bitmap descriptor
registers .. 149
quadlinear decimation... 181
quadword mode addressing... 20
RAMDAC
18- or 24-bit CLUT select... 47
access .. 38
clock doubled operation... 45
color mode select... 90
gain adjust... 48
lock writes.. 72
LUT write cycle control... 45
PCI bus snooping... 73
power down .. 45
power down CLUT ... 46, 51
power down sense circuit.. 46
power saving disable... 100
power up time... 100
signature testing... 46, 92
refresh
clock speed select ... 101
refresh, DRAM... 20, 76
reinterlacing
enable ... 172
reset
2D Graphics Engine... 133
LPB ... 171
software.. 77
revision status... 70, 71
row scan count... 16
S
Savage4 LT indicator ... 103
scissors ... 204
SCLK
divide ... 185
source select... 109
screen off .. 9
screen width ... 82
SDCLKR
delay ... 48, 88
SDRAM
4 bank support ... 103
refresh control .. 76
SDRAM/SGRAM
auto refresh to new command timing... 90
CAS latency ... 93
last data in to row precharge delay timing................................. 90
minimum low time .. 91
time select for consecutive bank accesses................................. 93
SDRAS
precharge timing.. 91
secondary bitmap descriptor
registers .. 150
SENSE
circuit enabled.. 46
status of internal signal ... 6
serial BIOS ROM
select... 108
serial BIOS ROM select .. 187, 188
serial port
register .. 104, 109, 110, 177
SGRAM
enable 1 cycle block write operation.. 100
mode set... 101
refresh control ... 76
refresh disable ... 101
Tbl parameter... 101
Trcd parameter.. 101
shadow status
enable update ... 225
sideband addressing support... 94
software reset .. 77
source base address ... 145
streams processor
triple buffering... 156
start address ... 18
start horizontal blank... 13
start horizontal sync position .. 14
start vertical blank ... 21
stepping information... 70, 71
Q
quadlinear decimation... 181
quadword mode addressing... 20
R
RAMDAC
18- or 24-bit CLUT select... 47
access .. 38
clock doubled operation... 45
color mode select... 90
gain adjust... 48
lock writes.. 72
LUT write cycle control... 45
PCI bus snooping... 73
power down .. 45
power down CLUT ... 46, 51
power down sense circuit.. 46
power saving disable... 100
power up time... 100
signature testing... 46, 92
refresh
clock speed select ... 101
refresh, DRAM... 20, 76
reinterlacing
enable ... 172
reset
2D Graphics Engine... 133
LPB ... 171
software.. 77
<table>
<thead>
<tr>
<th>Configuration/Status Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>streams processor</td>
</tr>
<tr>
<td>blending..........................</td>
</tr>
<tr>
<td>chroma keying</td>
</tr>
<tr>
<td>color/chroma keying</td>
</tr>
<tr>
<td>compose modes</td>
</tr>
<tr>
<td>display FIFO fetch delay</td>
</tr>
<tr>
<td>display FIFO fetch timing</td>
</tr>
<tr>
<td>double buffering</td>
</tr>
<tr>
<td>FIFO control</td>
</tr>
<tr>
<td>filter characteristics</td>
</tr>
<tr>
<td>filter constants</td>
</tr>
<tr>
<td>input data formats</td>
</tr>
<tr>
<td>mode select</td>
</tr>
<tr>
<td>primary stream stride</td>
</tr>
<tr>
<td>primary stream window</td>
</tr>
<tr>
<td>register loading</td>
</tr>
<tr>
<td>scaling</td>
</tr>
<tr>
<td>secondary stream stride</td>
</tr>
<tr>
<td>secondary stream window</td>
</tr>
<tr>
<td>switch display buffer between VSYNCs</td>
</tr>
<tr>
<td>subsystem ID</td>
</tr>
<tr>
<td>information source select</td>
</tr>
<tr>
<td>shadow CR registers</td>
</tr>
<tr>
<td>target abort</td>
</tr>
<tr>
<td>texture</td>
</tr>
<tr>
<td>address</td>
</tr>
<tr>
<td>control</td>
</tr>
<tr>
<td>current surface tag</td>
</tr>
<tr>
<td>description</td>
</tr>
<tr>
<td>transparency</td>
</tr>
<tr>
<td>transparent color</td>
</tr>
<tr>
<td>tiled surface definition</td>
</tr>
<tr>
<td>tiling</td>
</tr>
<tr>
<td>primary stream on/off</td>
</tr>
<tr>
<td>secondary stream on/off</td>
</tr>
<tr>
<td>timeout registers</td>
</tr>
<tr>
<td>triple buffering</td>
</tr>
<tr>
<td>select</td>
</tr>
<tr>
<td>tri-state off</td>
</tr>
<tr>
<td>HSYNC</td>
</tr>
<tr>
<td>VSYNC</td>
</tr>
<tr>
<td>TV</td>
</tr>
<tr>
<td>8 bpp modes</td>
</tr>
<tr>
<td>8 bpp output</td>
</tr>
<tr>
<td>DAC output level</td>
</tr>
<tr>
<td>enable digital data output</td>
</tr>
<tr>
<td>encoder mode</td>
</tr>
<tr>
<td>external encoder strapping</td>
</tr>
<tr>
<td>return clock phase</td>
</tr>
<tr>
<td>TVCLK delay</td>
</tr>
<tr>
<td>use flat panel logic</td>
</tr>
<tr>
<td>TV DAC control</td>
</tr>
<tr>
<td>gain adjust</td>
</tr>
<tr>
<td>output level</td>
</tr>
<tr>
<td>two page screen</td>
</tr>
<tr>
<td>underline location</td>
</tr>
<tr>
<td>unlocking</td>
</tr>
<tr>
<td>configuration strapping registers</td>
</tr>
<tr>
<td>extended sequencer registers</td>
</tr>
<tr>
<td>S3 VGA registers</td>
</tr>
<tr>
<td>system control/extension registers</td>
</tr>
<tr>
<td>VBI enable</td>
</tr>
<tr>
<td>parameters</td>
</tr>
<tr>
<td>VCLK phase with respect to DCLK</td>
</tr>
<tr>
<td>vertex buffer address</td>
</tr>
<tr>
<td>vertical blank</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>start</td>
</tr>
<tr>
<td>vertical display end</td>
</tr>
<tr>
<td>vertical expansion[alternate]</td>
</tr>
<tr>
<td>vertical interpolation</td>
</tr>
<tr>
<td>enable</td>
</tr>
<tr>
<td>luma only</td>
</tr>
<tr>
<td>vertical retrace</td>
</tr>
<tr>
<td>counter value</td>
</tr>
<tr>
<td>enable interrupt</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>start</td>
</tr>
<tr>
<td>vertical sync</td>
</tr>
<tr>
<td>active status</td>
</tr>
<tr>
<td>control for power management</td>
</tr>
<tr>
<td>polarity</td>
</tr>
<tr>
<td>vertical total</td>
</tr>
<tr>
<td>VGA graphics mode select</td>
</tr>
<tr>
<td>VGA memory bus width</td>
</tr>
<tr>
<td>VGA memory mapping</td>
</tr>
<tr>
<td>video BIOS</td>
</tr>
<tr>
<td>access enable (PCI)</td>
</tr>
<tr>
<td>base address (PCI)</td>
</tr>
<tr>
<td>video display enable</td>
</tr>
<tr>
<td>VIP</td>
</tr>
<tr>
<td>control</td>
</tr>
<tr>
<td>device select</td>
</tr>
<tr>
<td>power down</td>
</tr>
<tr>
<td>timeout</td>
</tr>
<tr>
<td>VSYNC change buffer between</td>
</tr>
</tbody>
</table>
Index

W

wake up... 135
watermarks
 3D destination/texture read/write 206
 primary stream .. 165
 secondary stream 166
 Z read/write .. 206
word mode addressing................................. 20, 22, 23
write blocking
 enable software control 169
 write combining enable 226

X

X-Windows.. 84

Z

Z buffering
 control .. 201, 202
 offset .. 203